203 research outputs found

    Sub-Second Dopamine Detection in Human Striatum

    Get PDF
    Fast-scan cyclic voltammetry at carbon fiber microelectrodes allows rapid (sub-second) measurements of dopamine release in behaving animals. Herein, we report the modification of existing technology and demonstrate the feasibility of making sub-second measurements of dopamine release in the caudate nucleus of a human subject during brain surgery. First, we describe the modification of our electrodes that allow for measurements to be made in a human brain. Next, we demonstrate in vitro and in vivo, that our modified electrodes can measure stimulated dopamine release in a rat brain equivalently to previously determined rodent electrodes. Finally, we demonstrate acute measurements of dopamine release in the caudate of a human patient during DBS electrode implantation surgery. The data generated are highly amenable for future work investigating the relationship between dopamine levels and important decision variables in human decision-making tasks

    Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma

    Get PDF
    Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes

    GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers

    Get PDF
    We describe methods with enhanced power and specificity to identify genes targeted by somatic copy-number alterations (SCNAs) that drive cancer growth. By separating SCNA profiles into underlying arm-level and focal alterations, we improve the estimation of background rates for each category. We additionally describe a probabilistic method for defining the boundaries of selected-for SCNA regions with user-defined confidence. Here we detail this revised computational approach, GISTIC2.0, and validate its performance in real and simulated datasets

    Molecular Architectures of Trimeric SIV and HIV-1 Envelope Glycoproteins on Intact Viruses: Strain-Dependent Variation in Quaternary Structure

    Get PDF
    The initial step in target cell infection by human, and the closely related simian immunodeficiency viruses (HIV and SIV, respectively) occurs with the binding of trimeric envelope glycoproteins (Env), composed of heterodimers of the viral transmembrane glycoprotein (gp41) and surface glycoprotein (gp120) to target T-cells. Knowledge of the molecular structure of trimeric Env on intact viruses is important both for understanding the molecular mechanisms underlying virus-cell interactions and for the design of effective immunogen-based vaccines to combat HIV/AIDS. Previous analyses of intact HIV-1 BaL virions have already resulted in structures of trimeric Env in unliganded and CD4-liganded states at ∼20 Γ… resolution. Here, we show that the molecular architectures of trimeric Env from SIVmneE11S, SIVmac239 and HIV-1 R3A strains are closely comparable to that previously determined for HIV-1 BaL, with the V1 and V2 variable loops located at the apex of the spike, close to the contact zone between virus and cell. The location of the V1/V2 loops in trimeric Env was definitively confirmed by structural analysis of HIV-1 R3A virions engineered to express Env with deletion of these loops. Strikingly, in SIV CP-MAC, a CD4-independent strain, trimeric Env is in a constitutively β€œopen” conformation with gp120 trimers splayed out in a conformation similar to that seen for HIV-1 BaL Env when it is complexed with sCD4 and the CD4i antibody 17b. Our findings suggest a structural explanation for the molecular mechanism of CD4-independent viral entry and further establish that cryo-electron tomography can be used to discover distinct, functionally relevant quaternary structures of Env displayed on intact viruses

    Depletion of Human Histone H1 Variants Uncovers Specific Roles in Gene Expression and Cell Growth

    Get PDF
    At least six histone H1 variants exist in somatic mammalian cells that bind to the linker DNA and stabilize the nucleosome particle contributing to higher order chromatin compaction. In addition, H1 seems to be actively involved in the regulation of gene expression. However, it is not well known whether the different variants have distinct roles or if they regulate specific promoters. We have explored this by inducible shRNA-mediated knock-down of each of the H1 variants in a human breast cancer cell line. Rapid inhibition of each H1 variant was not compensated for by changes of expression of other variants. Microarray experiments have shown a different subset of genes to be altered in each H1 knock-down. Interestingly, H1.2 depletion caused specific effects such as a cell cycle G1-phase arrest, the repressed expression of a number of cell cycle genes, and decreased global nucleosome spacing. On its side, H1.4 depletion caused cell death in T47D cells, providing the first evidence of the essential role of an H1 variant for survival in a human cell type. Thus, specific phenotypes are observed in breast cancer cells depleted of individual histone H1 variants, supporting the theory that distinct roles exist for the linker histone variants

    Suppression of Lung Adenocarcinoma Progression by Nkx2-1

    Get PDF
    Despite the high prevalence and poor outcome of patients with metastatic lung cancer the mechanisms of tumour progression and metastasis remain largely uncharacterized. Here we modelled human lung adenocarcinoma, which frequently harbours activating point mutations in KRAS and inactivation of the p53 pathway, using conditional alleles in mice. Lentiviral-mediated somatic activation of oncogenic Kras and deletion of p53 in the lung epithelial cells of Kras[superscript LSL-G12D/+];p53[superscript flox/flox] mice initiates lung adenocarcinoma development4. Although tumours are initiated synchronously by defined genetic alterations, only a subset becomes malignant, indicating that disease progression requires additional alterations. Identification of the lentiviral integration sites allowed us to distinguish metastatic from non-metastatic tumours and determine the gene expression alterations that distinguish these tumour types. Cross-species analysis identified the NK2-related homeobox transcription factor Nkx2-1 (also called Ttf-1 or Titf1) as a candidate suppressor of malignant progression. In this mouse model, Nkx2-1 negativity is pathognomonic of high-grade poorly differentiated tumours. Gain- and loss-of-function experiments in cells derived from metastatic and non-metastatic tumours demonstrated that Nkx2-1 controls tumour differentiation and limitsmetastatic potential in vivo. Interrogation of Nkx2-1-regulated genes, analysis of tumours at defined developmental stages, and functional complementation experiments indicate that Nkx2-1 constrains tumours in part by repressing the embryonically restricted chromatin regulator Hmga2. Whereas focal amplification of NKX2-1 in a fraction of human lung adenocarcinomas has focused attention on its oncogenic function, our data specifically link Nkx2-1 downregulation to loss of differentiation, enhanced tumour seeding ability and increased metastatic proclivity. Thus, the oncogenic and suppressive functions ofNkx2-1 in the sametumourNational Institutes of Health (U.S.) (grant U01-CA84306 )National Institutes of Health (U.S.) (grant K99-CA151968)Howard Hughes Medical InstituteLudwig Center for Molecular OncologyNational Cancer Institute (U.S.) (Cancer Center Support (core) grant P30-CA14051

    Inhibitor-Sensitive FGFR1 Amplification in Human Non-Small Cell Lung Cancer

    Get PDF
    Background Squamous cell lung carcinomas account for approximately 25% of new lung carcinoma cases and 40,000 deaths per year in the United States. Although there are multiple genomically targeted therapies for lung adenocarcinoma, none has yet been reported in squamous cell lung carcinoma. Methodology/Principal Findings Using SNP array analysis, we found that a region of chromosome segment 8p11-12 containing three genes–WHSC1L1, LETM2, and FGFR1–is amplified in 3% of lung adenocarcinomas and 21% of squamous cell lung carcinomas. Furthermore, we demonstrated that a non-small cell lung carcinoma cell line harboring focal amplification of FGFR1 is dependent on FGFR1 activity for cell growth, as treatment of this cell line either with FGFR1-specific shRNAs or with FGFR small molecule enzymatic inhibitors leads to cell growth inhibition. Conclusions/Significance These studies show that FGFR1 amplification is common in squamous cell lung cancer, and that FGFR1 may represent a promising therapeutic target in non-small cell lung cancer.Novartis Pharmaceuticals CorporationAmerican Lung AssociationUniting Against Lung CancerSara Thomas Monopoli FundSeaman FoundationIndia. Dept. of BiotechnologyNational Lung Cancer Partnershi

    Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway

    Get PDF
    Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation.Norman B. Leventhal FellowshipUnited States. National Institutes of Health (NIH T32 MH074249)United States. National Institutes of Health (NIH RO1 NS051874

    Functional Copy-Number Alterations in Cancer

    Get PDF
    Understanding the molecular basis of cancer requires characterization of its genetic defects. DNA microarray technologies can provide detailed raw data about chromosomal aberrations in tumor samples. Computational analysis is needed (1) to deduce from raw array data actual amplification or deletion events for chromosomal fragments and (2) to distinguish causal chromosomal alterations from functionally neutral ones. We present a comprehensive computational approach, RAE, designed to robustly map chromosomal alterations in tumor samples and assess their functional importance in cancer. To demonstrate the methodology, we experimentally profile copy number changes in a clinically aggressive subtype of soft-tissue sarcoma, pleomorphic liposarcoma, and computationally derive a portrait of candidate oncogenic alterations and their target genes. Many affected genes are known to be involved in sarcomagenesis; others are novel, including mediators of adipocyte differentiation, and may include valuable therapeutic targets. Taken together, we present a statistically robust methodology applicable to high-resolution genomic data to assess the extent and function of copy-number alterations in cancer
    • …
    corecore