101 research outputs found
The area-based social patterning of injuries among 10 to 19 year olds Changes over time in the Stockholm County
<p>Abstract</p> <p>Background</p> <p>Area-based studies of childhood injuries strongly suggest that neighborhood socio-demographic and economic circumstances impact on various β though not all β types of injuries. The primary aim of this study was to investigate the stability over time of the association between area characteristics and childhood injuries of various causes.</p> <p>Methods</p> <p>Register-based and ecological, the study encompassed Stockholm County's 138 parishes, and considered two time periods (1993β95; 2003β05). Two indices were measured: economic deprivation and social fragmentation, and parishes were allocated to their respective quintile on each index. Data on both unintentional and intentional injuries for children (boys and girls) aged 10β14 and 15β19 respectively were gathered from the County Council's hospital inpatient register. For each period and index, gender, age and cause-specific comparisons were made to assess the rate ratios (with 95% confidence intervals) of being injured using parishes belonging to the best index level as a comparison group. A series of simple and partial Pearson correlations were also calculated to assess the independent contribution of each index.</p> <p>Results</p> <p>Regardless of time period, there were rather few significant rate ratios and, when they occurred, there were both under and excess risks. For instance, in each period, boys from both age groups living in parishes with the highest levels of economic deprivation had lower rate of injury as a motor vehicle rider. Most strikingly, intentional injuries were more frequent during the second time period and in considerable excess among girls aged 15β19 from more economically deprived areas. Also, during that last period, none of the injury causes correlated significantly with the index of social fragmentation after adjustment for economic deprivation (partial correlation).</p> <p>Conclusion</p> <p>Over a ten-year period, differential economic deprivation among parishes has widened more than social fragmentation in Stockholm County. The correlation between those indices is high in both periods of time whilst the association between the levels of each index and injury rates varies depending on group of injuries or time period considered. It is of concern that intentional injuries have increased numerically and are significantly and positively correlated with economic deprivation (net of social fragmentation), in particular among girls.</p
Quantum black hole entropy and Newton constant renormalization
We discuss the status of the black hole entropy formula in low energy effective field theory. The low energy expansion of the
black hole entropy is studied in a non-equilibrium situation: the semiclassical
decay of hot flat space by black hole nucleation. In this context the entropy
can be defined as an enhancement factor in the semiclassical decay rate, which
is dominated by a sphaleron-like saddle point. We find that all perturbative
divergences appearing in Euclidean calculations of the entropy can be
renormalized in low energy couplings. We also discuss some formal aspects of
the relation between the Euclidean and Hamiltonian approaches to the one loop
corrections to black hole entropy and geometric entropy, and we emphasize the
virtues of the use of covariant regularization prescriptions. In fact, the
definition of black hole entropy in terms of decay rates {\it requires} the use
of covariant measures and accordingly, covariant regularizations in path
integrals. Finally, we speculate on the possibility that low energy effective
field theory could be sufficient to understand the microscopic degrees of
freedom underlying black hole entropy. We propose a qualitative physical
picture in which black hole entropy refers to a space of quasi-coherent states
of infalling matter, together with its gravitational field. We stress that this
scenario might provide a low energy explanation of both the black hole entropy
and the information puzzle.Comment: 24 pages, LaTeX. Several points have been clarified, though results
remain the same. Minor typos corrected, and references updated. Version to
appear in Phys. Rev.
Cryptic Disc Structures Resembling Ediacaran Discoidal Fossils from the Lower Silurian Hellefjord Schist, Arctic Norway
The Hellefjord Schist, a volcaniclastic psammite-pelite formation in the Caledonides of Arctic Norway contains discoidal impressions and apparent tube casts that share morphological and taphonomic similarities to Neoproterozoic stem-holdfast forms. U-Pb zircon geochronology on the host metasediment indicates it was deposited between 437 Β± 2 and 439 Β± 3 Ma, but also indicates that an inferred basal conglomerate to this formation must be part of an older stratigraphic element, as it is cross-cut by a 546 Β± 4 Ma pegmatite. These results confirm that the Hellefjord Schist is separated from underlying older Proterozoic rocks by a thrust. It has previously been argued that the Cambrian Substrate Revolution destroyed the ecological niches that the Neoproterozoic frond-holdfasts organisms occupied. However, the discovery of these fossils in Silurian rocks demonstrates that the environment and substrate must have been similar enough to Neoproterozoic settings that frond-holdfast bodyplans were still ecologically viable some hundred million years later
Lentiviral Vectors and Protocols for Creation of Stable hESC Lines for Fluorescent Tracking and Drug Resistance Selection of Cardiomyocytes
Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes.Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK) promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and alpha-myosin heavy chain (alphaMHC) promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function.The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications
Recommended from our members
Characterisation of development and electrophysiological mechanisms underlying rhythmicity of the avian lymph heart
Despite significant advances in tissue engineering such as the use of scaffolds, bioreactors and pluripotent stem cells, effective cardiac tissue engineering for therapeutic purposes has remained a largely intractable challenge. For this area to capitalise on such advances, a novel approach may be to unravel the physiological mechanisms underlying the development of tissues that exhibit rhythmic contraction yet do not originate from the cardiac lineage. Considerable attention has been focused on the physiology of the avian lymph heart, a discrete organ with skeletal muscle origins yet which displays pacemaker properties normally only found in the heart. A functional lymph heart is essential for avian survival and growth in ovo. The histological nature of the lymph heart is similar to skeletal muscle although molecular and bioelectrical characterisation during development to assess mechanisms that contribute towards lymph heart contractile rhythmicity have not been undertaken. A better understanding of these processes may provide exploitable insights for therapeutic rhythmically contractile tissue engineering approaches in this area of significant unmet clinical need. Here, using molecular and electrophysiological approaches, we describe the molecular development of the lymph heart to understand how this skeletal muscle becomes fully functional during discrete in ovo stages of development. Our results show that the lymph heart does not follow the normal transitional programme of myogenesis as documented in most skeletal muscle, but instead develops through a concurrent programme of precursor expansion, commitment to myogenesis and functional differentiation which offers a mechanistic explanation for its rapid development. Extracellular electrophysiological field potential recordings revealed that the peak-to-peak amplitude of electrically evoked local field potentials elicited from isolated lymph heart were significantly reduced by treatment with carbachol; an effect that could be fully reversed by atropine. Moreover, nifedipine and cyclopiazonic acid both significantly reduced peak-to-peak local field potential amplitude. Optical recordings of lymph heart showed that the organβs rhythmicity can be blocked by the HCN channel blocker, ZD7288; an effect also associated with a significant reduction in peak-to-peak local field potential amplitude. Additionally, we also show that isoforms of HCN channels are expressed in avian lymph heart. These results demonstrate that cholinergic signalling and L-type Ca2+ channels are important in excitation and contraction coupling, while HCN channels contribute to maintenance of lymph heart rhythmicity
The relevance of WHO injury surveillance guidelines for evaluation: learning from the aboriginal community-centered injury surveillance system (ACCISS) and two institution-based systems
<p>Abstract</p> <p>Background</p> <p>Over the past three decades, the capacity to develop and implement injury surveillance systems (ISS) has grown worldwide and is reflected by the diversity of data gathering environments in which ISS operate. The capacity to evaluate ISS, however, is less advanced and existing evaluation guidelines are ambiguous. Furthermore, the applied relevance of these guidelines to evaluate ISS operating in various settings is unclear. The aim of this paper was to examine how the World Health Organization (WHO) injury surveillance guidelines have been applied to evaluate systems operating in three different contexts.</p> <p>Methods</p> <p>The attributes of a good surveillance system as well as instructions for conducting evaluations, outlined in the WHO injury surveillance guidelines, were used to develop an analytical framework. Using this framework, a comparative analysis of the application of the guidelines was conducted using; the Aboriginal Community-Centered Injury Surveillance System (ACCISS) from Canada, the Shantou-Emergency Department Injury Surveillance Project (S-EDISP) from China, and the Yorkhill-Canadian Hospitals Injury Reporting and Prevention Program (Y-CHIRPP) imported from Canada and implemented in Scotland.</p> <p>Results</p> <p>The WHO guidelines provide only a basic platform for evaluation. The guidelines over emphasize epidemiologic attributes and methods and under emphasize public health and injury prevention perspectives requiring adaptation for context-based relevance. Evaluation elements related to the dissemination and use of knowledge, acceptability, and the sustainability of ISS are notably inadequate. From a public health perspective, alternative reference points are required for re-conceptualizing evaluation paradigms. This paper offers an ISS evaluation template that considers how the WHO guidelines could be adapted and applied.</p> <p>Conclusions</p> <p>Findings suggest that attributes of a good surveillance system, when used as evaluation metrics, cannot be weighted equally across ISS. In addition, the attribute of acceptability likely holds more relevance than previously recognized and should be viewed as a critical underpinning attribute of ISS. Context-oriented evaluations sensitive to distinct operational environments are more likely to address knowledge gaps related to; understanding links between the production of injury data and its use, and the effectiveness, impact, and sustainability of ISS. Current frameworks are predisposed to disassociating epidemiologic approaches from subjective factors and social processes.</p
Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates
Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5βyears) using invertebrate and vertebrate corpses.Once placed on mats,the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas.The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye.The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies,the swim bladder and muscles in fish, and the bone marrow in frog legs.This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long timeThis work, which is part of the research projects CGL2013-42643P and the research grant supporting M. Iniesto were funded by the Spanish Ministry of Economy and Competitiveness. The SEM facility at IMPMC was supported by Region Ile de France grant SESAME 2006 I-07-593/R, INSU-CNRS, INP-CNRS, and University Pierre et Marie Curie, Paris. SEM analyses performed for this study were supported by a grant from the Foundation Simone et Cino Del Duca (PI: K. Benzerara). Some SEM observations were also conducted at SIdI UAM (Madrid). Environmental SEM observations were performed at the MNCN (Madrid
Nucleobindin Co-Localizes and Associates with Cyclooxygenase (COX)-2 in Human Neutrophils
The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis
Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses
Seminal fluid proteins transferred from males to females during copulation are required for full fertility and can exert dramatic effects on female physiology and behavior. In Drosophila melanogaster, the seminal protein sex peptide (SP) affects mated females by increasing egg production and decreasing receptivity to courtship. These behavioral changes persist for several days because SP binds to sperm that are stored in the female. SP is then gradually released, allowing it to interact with its female-expressed receptor. The binding of SP to sperm requires five additional seminal proteins, which act together in a network. Hundreds of uncharacterized male and female proteins have been identified in this species, but individually screening each protein for network function would present a logistical challenge. To prioritize the screening of these proteins for involvement in the SP network, we used a comparative genomic method to identify candidate proteins whose evolutionary rates across the Drosophila phylogeny co-vary with those of the SP network proteins. Subsequent functional testing of 18 co-varying candidates by RNA interference identified three male seminal proteins and three female reproductive tract proteins that are each required for the long-term persistence of SP responses in females. Molecular genetic analysis showed the three new male proteins are required for the transfer of other network proteins to females and for SP to become bound to sperm that are stored in mated females. The three female proteins, in contrast, act downstream of SP binding and sperm storage. These findings expand the number of seminal proteins required for SP's actions in the female and show that multiple female proteins are necessary for the SP response. Furthermore, our functional analyses demonstrate that evolutionary rate covariation is a valuable predictive tool for identifying candidate members of interacting protein networks. Β© 2014 Findlay et al
The Drosophila melanogaster Seminal Fluid Protease βSeminaseβ Regulates Proteolytic and Post-Mating Reproductive Processes
Proteases and protease inhibitors have been identified in the ejaculates of animal taxa ranging from invertebrates to mammals and form a major protein class among Drosophila melanogaster seminal fluid proteins (SFPs). Other than a single protease cascade in mammals that regulates seminal clot liquefaction, no proteolytic cascades (i.e. pathways with at least two proteases acting in sequence) have been identified in seminal fluids. In Drosophila, SFPs are transferred to females during mating and, together with sperm, are necessary for the many post-mating responses elicited in females. Though several SFPs are proteolytically cleaved either during or after mating, virtually nothing is known about the proteases involved in these cleavage events or the physiological consequences of proteolytic activity in the seminal fluid on the female. Here, we present evidence that a protease cascade acts in the seminal fluid of Drosophila during and after mating. Using RNAi to knock down expression of the SFP CG10586, a predicted serine protease, we show that it acts upstream of the SFP CG11864, a predicted astacin protease, to process SFPs involved in ovulation and sperm entry into storage. We also show that knockdown of CG10586 leads to lower levels of egg laying, higher rates of sexual receptivity to subsequent males, and abnormal sperm usage patterns, processes that are independent of CG11864. The long-term phenotypes of females mated to CG10586 knockdown males are similar to those of females that fail to store sex peptide, an important elicitor of long-term post-mating responses, and indicate a role for CG10586 in regulating sex peptide. These results point to an important role for proteolysis among insect SFPs and suggest that protease cascades may be a mechanism for precise temporal regulation of multiple post-mating responses in females
- β¦