82 research outputs found

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio

    Assessment of Virally Vectored Autoimmunity as a Biocontrol Strategy for Cane Toads

    Get PDF
    BACKGROUND: The cane toad, Bufo (Chaunus) marinus, is one of the most notorious vertebrate pests introduced into Australia over the last 200 years and, so far, efforts to identify a naturally occurring B. marinus-specific pathogen for use as a biological control agent have been unsuccessful. We explored an alternative approach that entailed genetically modifying a pathogen with broad host specificity so that it no longer caused disease, but carried a gene to disrupt the cane toad life cycle in a species specific manner. METHODOLOGY/PRINCIPAL FINDINGS: The adult beta globin gene was selected as the model gene for proof of concept of autoimmunity as a biocontrol method for cane toads. A previous report showed injection of bullfrog tadpoles with adult beta globin resulted in an alteration in the form of beta globin expressed in metamorphs as well as reduced survival. In B. marinus we established for the first time that the switch from tadpole to adult globin exists. The effect of injecting B. marinus tadpoles with purified recombinant adult globin protein was then assessed using behavioural (swim speed in tadpoles and jump length in metamorphs), developmental (time to metamorphosis, weight and length at various developmental stages, protein profile of adult globin) and genetic (adult globin mRNA levels) measures. However, we were unable to detect any differences between treated and control animals. Further, globin delivery using Bohle iridovirus, an Australian ranavirus isolate belonging to the Iridovirus family, did not reduce the survival of metamorphs or alter the form of beta globin expressed in metamorphs. CONCLUSIONS/SIGNIFICANCE: While we were able to show for the first time that the switch from tadpole to adult globin does occur in B. marinus, we were not able to induce autoimmunity and disrupt metamorphosis. The short development time of B. marinus tadpoles may preclude this approach

    Vaccine Potential of Nipah Virus-Like Particles

    Get PDF
    Nipah virus (NiV) was first recognized in 1998 in a zoonotic disease outbreak associated with highly lethal febrile encephalitis in humans and a predominantly respiratory disease in pigs. Periodic deadly outbreaks, documentation of person-to-person transmission, and the potential of this virus as an agent of agroterror reinforce the need for effective means of therapy and prevention. In this report, we describe the vaccine potential of NiV virus-like particles (NiV VLPs) composed of three NiV proteins G, F and M. Co-expression of these proteins under optimized conditions resulted in quantifiable amounts of VLPs with many virus-like/vaccine desirable properties including some not previously described for VLPs of any paramyxovirus: The particles were fusogenic, inducing syncytia formation; PCR array analysis showed NiV VLP-induced activation of innate immune defense pathways; the surface structure of NiV VLPs imaged by cryoelectron microscopy was dense, ordered, and repetitive, and consistent with similarly derived structure of paramyxovirus measles virus. The VLPs were composed of all the three viral proteins as designed, and their intracellular processing also appeared similar to NiV virions. The size, morphology and surface composition of the VLPs were consistent with the parental virus, and importantly, they retained their antigenic potential. Finally, these particles, formulated without adjuvant, were able to induce neutralizing antibody response in Balb/c mice. These findings indicate vaccine potential of these particles and will be the basis for undertaking future protective efficacy studies in animal models of NiV disease

    From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists

    Get PDF
    The microbiota of multi-pond solar salterns around the world has been analyzed using a variety of culture-dependent and molecular techniques. However, studies addressing the dynamic nature of these systems are very scarce. Here we have characterized the temporal variation during 1 year of the microbiota of five ponds with increasing salinity (from 18% to >40%), by means of CARD-FISH and DGGE. Microbial community structure was statistically correlated with several environmental parameters, including ionic composition and meteorological factors, indicating that the microbial community was dynamic as specific phylotypes appeared only at certain times of the year. In addition to total salinity, microbial composition was strongly influenced by temperature and specific ionic composition. Remarkably, DGGE analyses unveiled the presence of most phylotypes previously detected in hypersaline systems using metagenomics and other molecular techniques, such as the very abundant Haloquadratum and Salinibacter representatives or the recently described low GC Actinobacteria and Nanohaloarchaeota. In addition, an uncultured group of Bacteroidetes was present along the whole range of salinity. Database searches indicated a previously unrecognized widespread distribution of this phylotype. Single-cell genome analysis of five members of this group suggested a set of metabolic characteristics that could provide competitive advantages in hypersaline environments, such as polymer degradation capabilities, the presence of retinal-binding light-activated proton pumps and arsenate reduction potential. In addition, the fairly high metagenomic fragment recruitment obtained for these single cells in both the intermediate and hypersaline ponds further confirm the DGGE data and point to the generalist lifestyle of this new Bacteroidetes group.This work was supported by the projects CGL2012-39627-C03-01 and 02 of the Spanish Ministry of Economy and Competitiveness, which were also co-financed with FEDER support from the European Union. TG group research is funded in part by a grant from the Spanish Ministry of Economy and Competitiveness (BIO2012-37161), a grant from the Qatar National Research Fund grant (NPRP 5-298-3-086) and a grant from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC (grant agreement no. ERC-2012-StG-310325)

    In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters

    Get PDF
    Background: The increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions. Results: We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species. Conclusions:B. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems

    Arcuate Fasciculus Abnormalities and Their Relationship with Psychotic Symptoms in Schizophrenia

    Get PDF
    Disruption of fronto-temporal connections involving the arcuate fasciculus (AF) may underlie language processing anomalies and psychotic features such as auditory hallucinations in schizophrenia. No study to date has specifically investigated abnormalities of white matter integrity at particular loci along the AF as well as its regional lateralization in schizophrenia. We examined white matter changes (fractional anisotropy (FA), axial diffusivity (AD), asymmetry indices) along the whole extent of the AF and their relationship with psychotic symptoms in 32 males with schizophrenia and 44 healthy males. Large deformation diffeomorphic metric mapping and Fiber Assignment Continuous Tracking were employed to characterize FA and AD along the geometric curve of the AF. Our results showed that patients with schizophrenia had lower FA in the frontal aspects of the left AF compared with healthy controls. Greater left FA and AD lateralization in the temporal segment of AF were associated with more severe positive psychotic symptoms such as delusions and hallucinations in patients with schizophrenia. Disruption of white matter integrity of the left frontal AF and accentuation of normal left greater than right asymmetry of FA/AD in the temporal AF further support the notion of aberrant fronto-temporal connectivity in schizophrenia. AF pathology can affect corollary discharge of neural signals from frontal speech/motor initiation areas to suppress activity of auditory cortex that may influence psychotic phenomena such as auditory hallucinations and facilitate elaboration of delusional content

    Do Frogs Get Their Kicks on Route 66? Continental U.S. Transect Reveals Spatial and Temporal Patterns of Batrachochytrium dendrobatidis Infection

    Get PDF
    The chytrid fungus Batrachochytrium dendrobatidis (Bd) has been devastating amphibians globally. Two general scenarios have been proposed for the nature and spread of this pathogen: Bd is an epidemic, spreading as a wave and wiping out individuals, populations, and species in its path; and Bd is endemic, widespread throughout many geographic regions on every continent except Antarctica. To explore these hypotheses, we conducted a transcontinental transect of United States Department of Defense (DoD) installations along U.S. Highway 66 from California to central Illinois, and continuing eastward to the Atlantic Seaboard along U.S. Interstate 64 (in sum from Marine Corps Base Camp Pendleton in California to Naval Air Station Oceana in Virginia). We addressed the following questions: 1) Does Bd occur in amphibian populations on protected DoD environments? 2) Is there a temporal pattern to the presence of Bd? 3) Is there a spatial pattern to the presence of Bd? and 4) In these limited human-traffic areas, is Bd acting as an epidemic (i.e., with evidence of recent introduction and/or die-offs due to chytridiomycosis), or as an endemic (present without clinical signs of disease)? Bd was detected on 13 of the 15 bases sampled. Samples from 30 amphibian species were collected (10% of known United States' species); half (15) tested Bd positive. There was a strong temporal (seasonal) component; in total, 78.5% of all positive samples came in the first (spring/early-summer) sampling period. There was also a strong spatial component—the eleven temperate DoD installations had higher prevalences of Bd infection (20.8%) than the four arid (<60 mm annual precipitation) bases (8.5%). These data support the conclusion that Bd is now widespread, and promote the idea that Bd can today be considered endemic across much of North America, extending from coast-to-coast, with the exception of remote pockets of naïve populations
    corecore