31 research outputs found

    Reduced costs with bisoprolol treatment for heart failure - An economic analysis of the second Cardiac Insufficiency Bisoprolol Study (CIBIS-II)

    Get PDF
    Background Beta-blockers, used as an adjunctive to diuretics, digoxin and angiotensin converting enzyme inhibitors, improve survival in chronic heart failure. We report a prospectively planned economic analysis of the cost of adjunctive beta-blocker therapy in the second Cardiac Insufficiency BIsoprolol Study (CIBIS II). Methods Resource utilization data (drug therapy, number of hospital admissions, length of hospital stay, ward type) were collected prospectively in all patients in CIBIS . These data were used to determine the additional direct costs incurred, and savings made, with bisoprolol therapy. As well as the cost of the drug, additional costs related to bisoprolol therapy were added to cover the supervision of treatment initiation and titration (four outpatient clinic/office visits). Per them (hospital bed day) costings were carried out for France, Germany and the U.K. Diagnosis related group costings were performed for France and the U.K. Our analyses took the perspective of a third party payer in France and Germany and the National Health Service in the U.K. Results Overall, fewer patients were hospitalized in the bisoprolol group, there were fewer hospital admissions perpatient hospitalized, fewer hospital admissions overall, fewer days spent in hospital and fewer days spent in the most expensive type of ward. As a consequence the cost of care in the bisoprolol group was 5-10% less in all three countries, in the per them analysis, even taking into account the cost of bisoprolol and the extra initiation/up-titration visits. The cost per patient treated in the placebo and bisoprolol groups was FF35 009 vs FF31 762 in France, DM11 563 vs DM10 784 in Germany and pound 4987 vs pound 4722 in the U.K. The diagnosis related group analysis gave similar results. Interpretation Not only did bisoprolol increase survival and reduce hospital admissions in CIBIS II, it also cut the cost of care in so doing. This `win-win' situation of positive health benefits associated with cost savings is Favourable from the point of view of both the patient and health care systems. These findings add further support for the use of beta-blockers in chronic heart failure

    Sedimentology of Volcanic Debris Avalanche Deposits

    No full text
    The deposits of volcanic debris avalanches (VDAs) contain diagnostic features that distinguish them from those of other landslides. In this chapter, we summarize the sedimentary characteristics and the different (litho-)facies described over the past four decades, and how findings from individual case studies can be adapted as globally applicable sedimentological tools. A plethora of descriptive terms and partially conflicting definitions emerged in the ever-growing literature on VDA deposits (VDADs). These we summarize and make recommendations for future use. Different facies models that were developed at different volcanoes might point to unique emplacement conditions (e.g. dry versus wet; confined versus unconfined) and, if confirmed, the apparent ‘conflict' of terminology might help identify the paleo-settings of ancient VDAs. General observations of large unsaturated landslides of different origin show that preservation of source stratigraphy, (mega-)clasts, jigsaw-fractured clasts, and incorporation of runout path material are common features. Their unique composition, grain sizes, and abundance of matrix sets VDADs apart from deposits of large rockslides and debris flows. The latter can be associated with VDAs, and whether they formed syn- or post-VDAD emplacement is reflected in forensic evidence within the depositional sequences. Recent case studies illustrate the advances in analytical techniques and in understanding the processes of debris avalanche transport and deposition forty years after the eruption and lateral collapse of Mount St. Helens volcano

    A Historical Perspective on Lateral Collapse and Volcanic Debris Avalanches

    No full text
    In the four decades since the 1980 eruption of Mount St. Helens, debris-avalanche deposits generated by gravitational lateral collapse of volcanoes have become widely recognized. Selected regionally sequenced case studies highlight the evolution of thought regarding these events prior to 1980 in contrast to subsequent research with benefit of insights from the events of May 18, 1980. These typically hummocky deposits, of volcanic materials but lying far beyond volcanoes, had puzzled geologists for more than a century and been interpreted as a wide range of primary and secondary volcanic or non-volcanic features. Contrary to general perception, however, the volcanological literature contained multiple accounts prior to 1980 that recognized the landslide origin of some of these deposits, albeit mostly in regional publications not widely known. The burst of interest in lateral-collapse events after 1980 has led to an average of one regional or global debris-avalanche inventory annually in terrestrial or submarine settings and the recognition of a thousand events from nearly 600 volcanoes. The last major volcaniclastic process to be widely recognized and understood, large-volume debris avalanches originating from lateral collapse of volcanic edifices have been found to be a relatively common occurrence across a wide spectrum of volcanic features and settings
    corecore