126 research outputs found

    Leading an Interprofessional Geriatric Clinical Skills Fair: A Train the Trainer Seminar

    Get PDF
    Objectives • Practice teaching skills related to interprofessional education (IPE) and geriatric competencies • Formulate an Action Plan and prepare to introduce an Interprofessional Geriatric Clinical Skills Fair at their own institutions • Recognize essential elements of a measurement tool that evaluates the effectiveness of an Interprofessional Geriatric Clinical Skills Fai

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    Evaluation of an Interprofessional Geriatric Clinical Skills Fair

    Get PDF
    Objectives •Describe the utilization of an interprofessional geriatric clinical skills fair to impart knowledge and skills pertaining to both core geriatric and IPE competencies. •Prepare to introduce an Interprofessional Geriatric Clinical Skills Fair at one’s own institution •Recognize essential elements of a measurement tool that evaluates the effectiveness of an Interprofessional Geriatric Clinical Skills Fai

    Reducing Tumour Hypoxia via Oral Administration of Oxygen Nanobubbles

    Get PDF
    Hypoxia has been shown to be a key factor inhibiting the successful treatment of solid tumours. Existing strategies for reducing hypoxia, however, have shown limited efficacy and/or adverse side effects. The aim of this study was to investigate the potential for reducing tumour hypoxia using an orally delivered suspension of surfactant-stabilised oxygen nanobubbles. Experiments were carried out in a mouse xenograft tumour model for human pancreatic cancer (BxPc-3 cells in male SCID mice). A single dose of 100 μL of oxygen saturated water, oxygen nanobubbles or argon nanobubbles was administered via gavage. Animals were sacrificed 30 minutes post-treatment (3 per group) and expression of hypoxia-inducible-factor-1α (HIF1α) protein measured by real time quantitative polymerase chain reaction and Western blot analysis of the excised tumour tissue. Neither the oxygen saturated water nor argon nanobubbles produced a statistically significant change in HIF1α expression at the transcriptional level. In contrast, a reduction of 75% and 25% in the transcriptional and translational expression of HIF1α respectively (p<0.001) was found for the animals receiving the oxygen nanobubbles. This magnitude of reduction has been shown in previous studies to be commensurate with an improvement in outcome with both radiation and drug-based treatments. In addition, there was a significant reduction in the expression of vascular endothelial growth factor (VEGF) in this group and corresponding increase in the expression of arrest-defective protein 1 homolog A (ARD1A)

    Anthrax Toxin Receptor 2 Determinants that Dictate the pH Threshold of Toxin Pore Formation

    Get PDF
    The anthrax toxin receptors, ANTXR1 and ANTXR2, act as molecular clamps to prevent the protective antigen (PA) toxin subunit from forming pores until exposure to low pH. PA forms pores at pH ∼6.0 or below when it is bound to ANTXR1, but only at pH ∼5.0 or below when it is bound to ANTXR2. Here, structure-based mutagenesis was used to identify non-conserved ANTXR2 residues responsible for this striking 1.0 pH unit difference in pH threshold. Residues conserved between ANTXR2 and ANTXR1 that influence the ANTXR2-associated pH threshold of pore formation were also identified. All of these residues contact either PA domain 2 or the neighboring edge of PA domain 4. These results provide genetic evidence for receptor release of these regions of PA as being necessary for the protein rearrangements that accompany anthrax toxin pore formation

    Different subcellular localisations of TRIM22 suggest species-specific function

    Get PDF
    The B30.2/SPRY domain is present in many proteins, including various members of the tripartite motif (TRIM) protein family such as TRIM5α, which mediates innate intracellular resistance to retroviruses in several primate species. This resistance is dependent on the integrity of the B30.2 domain that evolves rapidly in primates and exhibits species-specific anti-viral activity. TRIM22 is another positively selected TRIM gene. Particularly, the B30.2 domain shows rapid evolution in the primate lineage and recently published data indicate an anti-viral function of TRIM22. We show here that human and rhesus TRIM22 localise to different subcellular compartments and that this difference can be assigned to the positively selected B30.2 domain. Moreover, we could demonstrate that amino acid changes in two variable loops (VL1 and VL3) are responsible for the different subcellular localisations

    Subcellular distribution of nuclear import-defective isoforms of the promyelocytic leukemia protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The promyelocytic leukemia (PML) protein participates in a number of cellular processes, including transcription regulation, apoptosis, differentiation, virus defense and genome maintenance. This protein is structurally organized into a tripartite motif (TRIM) at its N-terminus, a nuclear localization signal (NLS) at its central region and a C-terminus that varies between alternatively spliced isoforms. Most PML splice variants target the nucleus where they define sub-nuclear compartments termed PML nuclear bodies (PML NBs). However, PML variants that lack the NLS are also expressed, suggesting the existence of PML isoforms with cytoplasmic functions. In the present study we expressed PML isoforms with a mutated NLS in U2OS cells to identify potential cytoplasmic compartments targeted by this protein.</p> <p>Results</p> <p>Expression of NLS mutated PML isoforms in U2OS cells revealed that PML I targets early endosomes, PML II targets the inner nuclear membrane (partially due to an extra NLS at its C-terminus), and PML III, IV and V target late endosomes/lysosomes. Clustering of PML at all of these subcellular locations depended on a functional TRIM domain.</p> <p>Conclusions</p> <p>This study demonstrates the capacity of PML to form macromolecular protein assemblies at several different subcellular sites. Further, it emphasizes a role of the variable C-terminus in subcellular target selection and a general role of the N-terminal TRIM domain in promoting protein clustering.</p

    Identifying Determinants of Cullin Binding Specificity Among the Three Functionally Different Drosophila melanogaster Roc Proteins via Domain Swapping

    Get PDF
    BACKGROUND: Cullin-dependent E3 ubiquitin ligases (CDL) are key regulators of protein destruction that participate in a wide range of cell biological processes. The Roc subunit of CDL contains an evolutionarily conserved RING domain that binds ubiquitin charged E2 and is essential for ubiquitylation. Drosophila melanogaster contains three highly related Roc proteins: Roc1a and Roc2, which are conserved in vertebrates, and Roc1b, which is specific to Drosophila. Our previous genetic data analyzing Roc1a and Roc1b mutants suggested that Roc proteins are functionally distinct, but the molecular basis for this distinction is not known. METHODOLOGY/PRINCIPAL FINDINGS: Using co-immunoprecipitation studies we show that Drosophila Roc proteins bind specific Cullins: Roc1a binds Cul1-4, Roc1b binds Cul3, and Roc2 binds Cul5. Through domain swapping experiments, we demonstrate that Cullin binding specificity is strongly influenced by the Roc NH(2)-terminal domain, which forms an inter-molecular beta sheet with the Cullin. Substitution of the Roc1a RING domain with that of Roc1b results in a protein with similar Cullin binding properties to Roc1a that is active as an E3 ligase but cannot complement Roc1a mutant lethality, indicating that the identity of the RING domain can be an important determinant of CDL function. In contrast, the converse chimeric protein with a substitution of the Roc1b RING domain with that of Roc1a can rescue the male sterility of Roc1b mutants, but only when expressed from the endogenous Roc1b promoter. We also identified mutations of Roc2 and Cul5 and show that they cause no overt developmental phenotype, consistent with our finding that Roc2 and Cul5 proteins are exclusive binding partners, which others have observed in human cells as well. CONCLUSIONS: The Drosophila Roc proteins are highly similar, but have diverged during evolution to bind a distinct set of Cullins and to utilize RING domains that have overlapping, but not identical, function in vivo
    • …
    corecore