107 research outputs found

    Extreme longevity variants at the FOXO3 locus may moderate FOXO3 isoform levels

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordThe rs2802292, rs2764264 and rs13217795 variants of FOXO3 have been associated with extreme longevity in multiple human populations, but the mechanisms underpinning this remain unclear. We aimed to characterise potential effects of longevity-associated variation on the expression and mRNA processing of the FOXO3 gene. We performed a comprehensive assessment of FOXO3 isoform usage across a wide variety of human tissues and carried out a bioinformatic analysis of the potential for longevity-associated variants to disrupt regulatory regions involved in isoform choice. We then related the expression of full length and 5' truncated FOXO3 isoforms to rs13217795 genotype in peripheral blood and skeletal muscle from individuals of different rs13217795 genotypes. FOXO3 isoforms displayed considerable tissue specificity. We determined that rs13231195 and its tightly aligned proxy variant rs9400239 may lie in regulatory regions involved in isoform choice. The longevity allele at rs13217795 was associated with increased levels of full length FOXO3 isoforms in peripheral blood and a decrease in truncated FOXO3 isoforms in skeletal muscle RNA. We suggest that the longevity effect of FOXO3 SNPs may in part derive from a shift in isoform usage in skeletal muscle away from the production of 5' truncated FOXO3 isoforms lacking a complete forkhead DNA binding domain, which may have compromised functionality.National Institute for Health Research (NIHR)Kuakini Medical Center, the US National Institutes of HealthNational Heart, Lung, and Blood InstituteUniversity of Exete

    Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. I. Parasitological, Hematological and Pathological Parameters

    Get PDF
    African trypanosomiasis is a severe parasitic disease that affects both humans and livestock. Several different species may cause animal trypanosomosis and although Trypanosoma vivax (sub-genus Duttonella) is currently responsible for the vast majority of debilitating cases causing great economic hardship in West Africa and South America, little is known about its biology and interaction with its hosts. Relatively speaking, T. vivax has been more than neglected despite an urgent need to develop efficient control strategies. Some pioneering rodent models were developed to circumvent the difficulties of working with livestock, but disappointedly were for the most part discontinued decades ago. To gain more insight into the biology of T. vivax, its interactions with the host and consequently its pathogenesis, we have developed a number of reproducible murine models using a parasite isolate that is infectious for rodents. Firstly, we analyzed the parasitical characteristics of the infection using inbred and outbred mouse strains to compare the impact of host genetic background on the infection and on survival rates. Hematological studies showed that the infection gave rise to severe anemia, and histopathological investigations in various organs showed multifocal inflammatory infiltrates associated with extramedullary hematopoiesis in the liver, and cerebral edema. The models developed are consistent with field observations and pave the way for subsequent in-depth studies into the pathogenesis of T. vivax - trypanosomosis

    Zebrafish as a Model System to Study the Physiological Function of Telomeric Protein TPP1

    Get PDF
    Telomeres are specialized chromatin structures at the end of chromosomes. Telomere dysfunction can lead to chromosomal abnormalities, DNA damage responses, and even cancer. In mammalian cells, a six-protein complex (telosome/shelterin) is assembled on the telomeres through the interactions between various domain structures of the six telomere proteins (POT1, TPP1, TIN2, TRF1, TRF2 and RAP1), and functions in telomere maintenance and protection. Within the telosome, TPP1 interacts directly with POT1 and TIN2 and help to mediate telosome assembly. Mechanisms of telomere regulation have been extensively studied in a variety of model organisms. For example, the physiological roles of telomere-targeted proteins have been assessed in mice through homozygous inactivation. In these cases, early embryonic lethality has prevented further studies of these proteins in embryogenesis and development. As a model system, zebrafish offers unique advantages such as genetic similarities with human, rapid developmental cycles, and ease of manipulation of its embryos. In this report, we detailed the identification of zebrafish homologues of TPP1, POT1, and TIN2, and showed that the domain structures and interactions of these telosome components appeared intact in zebrafish. Importantly, knocking down TPP1 led to multiple abnormalities in zebrafish embryogenesis, including neural death, heart malformation, and caudal defect. And these embryos displayed extensive apoptosis. These results underline the importance of TPP1 in zebrafish embryogenesis, and highlight the feasibility and advantages of investigating the signaling pathways and physiological function of telomere proteins in zebrafish

    Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons

    Get PDF
    Although the role of the microtubule-binding domain of the tau protein in the modulation of microtubule assembly is widely established, other possible functions of this protein have been poorly investigated. We have analyzed the effect of adenovirally mediated expression of two fragments of the N-terminal portion - free of microtubule-binding domain - of the tau protein in cerebellar granule neurons (CGNs). We found that while the expression of the tau (1-230) fragment, as well as of full-length tau, inhibits the onset of apoptosis, the tau (1-44) fragment exerts a powerful toxic action on the same neurons. The antiapoptotic action of tau (1-230) is exerted at the level of Akt-mediated activation of the caspase cascade. On the other hand, the toxic action of the (1-44) fragment is not prevented by inhibitors of CGN apoptosis, but is fully inhibited by NMDA receptor antagonists. These findings point to a novel, physiological role of the N-terminal domain of tau, but also underlay that its possible proteolytic truncation mediated by apoptotic proteases may generate a highly toxic fragment that could contribute to neuronal death

    DNA damage in obesity: Initiator, promoter and predictor of cancer

    Get PDF
    Epidemiological evidence linking obesity with increased risk of cancer is steadily growing, although the causative aspects underpinning this association are only partially understood. Obesity leads to a physiological imbalance in the regulation of adipose tissue and its normal functioning, resulting in hyperglycaemia, dyslipidaemia and inflammation. These states promote the generation of oxidative stress, which is exacerbated in obesity by a decline in anti-oxidant defence systems. Oxidative stress can have a marked impact on DNA, producing mutagenic lesions that could prove carcinogenic. Here we review the current evidence for genomic instability, sustained DNA damage and accelerated genome ageing in obesity. We explore the notion of genotoxicity, ensuing from systemic oxidative stress, as a key oncogenic factor in obesity. Finally, we advocate for early, pre-malignant assessment of genome integrity and stability to inform surveillance strategies and interventions

    Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis

    Get PDF
    A comprehensive literature search was performed to collate evidence of mitochondrial dysfunction in autism spectrum disorders (ASDs) with two primary objectives. First, features of mitochondrial dysfunction in the general population of children with ASD were identified. Second, characteristics of mitochondrial dysfunction in children with ASD and concomitant mitochondrial disease (MD) were compared with published literature of two general populations: ASD children without MD, and non-ASD children with MD. The prevalence of MD in the general population of ASD was 5.0% (95% confidence interval 3.2, 6.9%), much higher than found in the general population (∼0.01%). The prevalence of abnormal biomarker values of mitochondrial dysfunction was high in ASD, much higher than the prevalence of MD. Variances and mean values of many mitochondrial biomarkers (lactate, pyruvate, carnitine and ubiquinone) were significantly different between ASD and controls. Some markers correlated with ASD severity. Neuroimaging, in vitro and post-mortem brain studies were consistent with an elevated prevalence of mitochondrial dysfunction in ASD. Taken together, these findings suggest children with ASD have a spectrum of mitochondrial dysfunction of differing severity. Eighteen publications representing a total of 112 children with ASD and MD (ASD/MD) were identified. The prevalence of developmental regression (52%), seizures (41%), motor delay (51%), gastrointestinal abnormalities (74%), female gender (39%), and elevated lactate (78%) and pyruvate (45%) was significantly higher in ASD/MD compared with the general ASD population. The prevalence of many of these abnormalities was similar to the general population of children with MD, suggesting that ASD/MD represents a distinct subgroup of children with MD. Most ASD/MD cases (79%) were not associated with genetic abnormalities, raising the possibility of secondary mitochondrial dysfunction. Treatment studies for ASD/MD were limited, although improvements were noted in some studies with carnitine, co-enzyme Q10 and B-vitamins. Many studies suffered from limitations, including small sample sizes, referral or publication biases, and variability in protocols for selecting children for MD workup, collecting mitochondrial biomarkers and defining MD. Overall, this evidence supports the notion that mitochondrial dysfunction is associated with ASD. Additional studies are needed to further define the role of mitochondrial dysfunction in ASD

    Effects of oxygen, growth state, and senescence on the antioxidant responses of WI-38 fibroblasts

    Get PDF
    Mitotically active, growth-arrested cells and proliferatively senescent cultures of human fetal lung fibroblasts (WI-38) were exposed to six different oxygen tensions for various lengths of time and then analyzed to determine the responses of their antioxidant defense system. Glutathione (GSH) concentration increased as a function of ambient oxygen tension in early passage cultures; the effect was larger in exponentially growing cultures than in those in a state of contact-inhibited growth arrest, but was absent in senescent cells. Conversely, the activity of glutathione disulfide reductase was greater in growth-arrested cultures than in mitotically active cells irrespective of oxygen tension. Glucose-6-phosphate dehydrogenase was lowest in log-phase cells exposed to different oxygen tensions for 24 h and in senescent cells. Both hypoxia and hyperoxia depressed selenium-dependent glutathione peroxidase activity in early passage cultures, while the activity of the enzyme progressively declined with increasing oxygen in senescent cells. The GSH S-transferase activity was unresponsive to changes in ambient oxygen tension in either young or senescent cultures. Manganese-containing superoxide dismutase (MnSOD) activity was unaffected by oxygen tension, but was elevated in young confluent cultures as compared with cultures in log-phase growth. MnSOD activity was significantly higher in senescent cultures than in early passage cultures and was also responsive to increased oxygen tension in senescent cultures. Copper–zinc-containing superoxide dismutases activity was not affected by oxygen tension or the passage of time, but it declined in senescent cultures

    The role of nuclear technologies in the diagnosis and control of livestock diseases—a review

    Full text link
    corecore