114 research outputs found

    Modelling the dynamics of traits involved in fighting-predators–prey system

    Get PDF
    We study the dynamics of a predator–prey system where predators fight forcaptured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk–dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population’s strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population withan adapted trait value is a step in a sequence changing the population’s strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator–prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator–prey dynamics

    Сучасні підходи до формування системи регулювання інноваційного розвитку регіонів

    Get PDF
    Статья посвящена проблеме формирования концептуальных и методологических аспектов усовершенствования организационно-экономического механизма системы регулирования инновационного развития регионов. В статье предложены принципы формирования такой системы, выделены блоки стратегии, которые требуют особого внимания и предложены направления их реализации.Стаття присвячена проблемі формування концептуальних та методологічних аспектів удосконалення організаційно-економічного механізму системи регулювання інноваційного розвитку регіонів. У статті запропоновано принципи формування такої системи, виділено блоки стратегії, що вимагають особливої уваги і запропоновано напрямки їхньої реалізації.The article is devoted to the problem the formation of conceptual and methodological aspects of improvement on organized-economical mechanism of the regulation system in innovative development of the regions. The principles of formation in such system, the strategies which need special attention and the directions in their realization are proposed in this article

    Competition for Light and Nutrients in Layered Communities of Aquatic Plants

    Get PDF
    Dominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that at high supply of light and nutrients, floating plants always dominate due to their primacy for light, even when submerged plants have lower minimal resource requirements. The model also shows that floating-plant dominance cannot be an alternative stable state in light-limited environments but only in nutrient-limited environments, depending on the plants’ resource consumption traits. Compared to unlayered communities, the asymmetry in competition for light—coincident with symmetry in competition for nutrients—leads to fundamentally different results: competition outcomes can no longer be predicted from species traits such as minimal resource requirements ( rule) and resource consumption. Also, the same two species can, depending on the environment, coexist or be alternative stable states. When applied to two common plant species in temperate regions, both the model and field data suggest that floating-plant dominance is unlikely to be an alternative stable state

    Scaling of stochasticity in dengue hemorrhagic fever epidemics

    Get PDF
    In this paper we analyze the stochastic version of a minimalistic multi-strain model, which captures essential differences between primary and secondary infections in dengue fever epidemiology, and investigate the interplay between stochasticity, seasonality and import. The introduction of stochasticity is needed to explain the fluctuations observed in some of the available data sets, revealing a scenario where noise and complex deterministic skeleton strongly interact. For large enough population size, the stochastic system can be well described by the deterministic skeleton gaining insight on the relevant parameter values purely on topological information of the dynamics, rather than classical parameter estimation of which application is in general restricted to fairly simple dynamical scenarios

    Global Production Increased by Spatial Heterogeneity in a Population Dynamics Model

    Get PDF
    Spatial and temporal heterogeneity are often described as important factors having a strong impact on biodiversity. The effect of heterogeneity is in most cases analyzed by the response of biotic interactions such as competition of predation. It may also modify intrinsic population properties such as growth rate. Most of the studies are theoretic since it is often difficult to manipulate spatial heterogeneity in practice. Despite the large number of studies dealing with this topics, it is still difficult to understand how the heterogeneity affects populations dynamics. On the basis of a very simple model, this paper aims to explicitly provide a simple mechanism which can explain why spatial heterogeneity may be a favorable factor for production.We consider a two patch model and a logistic growth is assumed on each patch. A general condition on the migration rates and the local subpopulation growth rates is provided under which the total carrying capacity is higher than the sum of the local carrying capacities, which is not intuitive. As we illustrate, this result is robust under stochastic perturbations

    Numerical bifurcation analysis of ecosystems in a spatially homogeneous environment.

    No full text
    The dynamics of single populations up to ecosystems, are often described by one or a set of non-linear ordinary differential equations. In this paper we review the use of bifurcation theory to analyse these non-linear dynamical systems. Bifurcation analysis gives regimes in the parameter space with quantitatively different asymptotic dynamic behaviour of the system. In small-scale systems the underlying models for the populations and their interaction are simple Lotka-Volterra models or more elaborated models with more biological detail. The latter ones are more difficult to analyse, especially when the number of populations is large. Therefore for large-scale systems the Lotka-Volterra equations are still popular despite the limited realism. Various approaches are discussed in which the different time-scale of ecological and evolutionary biological processes are considered together
    corecore