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Abstract We study the dynamics of a predator–prey system where predators fight for
captured prey besides searching for and handling (and digestion) of the prey. Fighting
for prey is modelled by a continuous time hawk–dove game dynamics where the gain
depends on the amount of disputed prey while the costs for fighting is constant per
fighting event. The strategy of the predator-population is quantified by a trait being the
proportion of the number of predator-individuals playing hawk tactics. The dynamics
of the trait is described by twomodels of adaptation: the replicator dynamics (RD) and
the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted
trait value changes the population’s strategy, and consequently its trait value, only
when its payoff is larger than the population average. In the AD-approach successful
replacement of the resident population after invasion of a rare variant population with
an adapted trait value is a step in a sequence changing the population’s strategy, and
hence its trait value. Themain aim is to compare the consequences of the two adaptation
models. In an equilibrium predator–prey system this will lead to convergence to a
neutral singular strategy, while in the oscillatory system to a continuous singular
strategy where in this endpoint the resident population is not invasible by any variant
population. In equilibrium (low prey carrying capacity) RD and AD-approach give
the same results, however not always in a periodically oscillating system (high prey
carrying-capacity) where the trait is density-dependent. For low costs the predator
population is monomorphic (only hawks) while for high costs dimorphic (hawks and
doves). These results illustrate that intra-specific trait dynamics matters in predator–
prey dynamics.
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1 Introduction

Traditionally in Ecology feeding of the predator population on prey is modelled using
the Holling type II functional response which depends on the rate of attack and the
time it takes to handle prey. We study the effects of an additional behavioural type via
modification of the functional response. The modelling approach has been formulated
firstly by Auger and Poggiale (1998). The encouraging example was the study of the
dynamics of a population of the domestic cat Felis catus with striking differences in
many traits between rural and urban cat populations.

This paper deals with the case where part of the captured prey is handled directly
and for the other part two predator individuals will fight before consumption. To
incorporate this in the model for the trophic interaction between predators and prey,
the predator population is divided into three compartments: searcher, feeders and
defenders. The ecological processes such as searching and feeding aremodelled similar
to the classical Holling functional response formulation. In both processes individuals
from a single compartment (searchers or feeders) are involved. In a similar way the
behavioural processes are modelled, now with encounters between individuals from
two different compartments (searchers and feeders) which makes the analysis more
complicated. In a number of articles by Auger and Poggiale (1998), Auger et al. (2002,
2006) and recently by Marvá et al. (2013) and Moussaoui et al. (2014), fighting is
modelled as a continuous time dynamic hawk–dove game (Maynard-Smith and Price
1973;Maynard-Smith 1982; Hofbauer and Sigmund 1998; Gintis 2000). The gain that
individuals receive depends on the amount of prey disputed and the tactics that both
fighting predator individuals play: hawk or dove. This is encapsulated in a pay-off
matrix. The pay-off matrix elements give the outcome of the contest between two
individuals playing the same or different tactics. At the population level the strategy
of the population is quantified by a time dependent continuous population trait being
the momentary proportion of the population that plays the hawk tactics (frequency
dependence). So, we use the term tactics to indicate how predator individuals act
during a contest for already captured, but not jet consumed, prey and the term strategy
for the performance of a whole population.

In an population dynamics context, evolutionary game theory is often combined
with inheritance of traits via mutations at the individual level. Then the time-scale
of the dynamical behaviour of the trait is slower than that of the prey and predator
populations. Here the trait changes are behavioural, due to for instances imitation
or learning, and these processes are often much faster than the rate of change of the
population sizes. Neverthelesswewill use the same terminology except thatwe replace
mutant by variant.

In the book byGintis (2000) the replicator dynamics (RD) describing the population
trait dynamics was derived for a population where the individuals play a hawk–dove
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game based on a learning process. The reproductive success (number newborns per
unit of time) was the fitness criterion while the number of individuals was constant
with the fraction hawks as the continuous time trait. An individual changes its tactic
when its pay-off becomes larger than the average pay-off of the population and in
this way the trait of the predator population increases (see for instance in the book
by Hofbauer and Sigmund 1998). The solution of the RD formulation gives either a
monomorphic predator population consisting of only hawks or a dimorphic predator
population where the ratio of the hawks and doves equals the individual gain divided
by the costs (see for instance Hofbauer and Sigmund 1998). In both cases the strategy
becomes an evolutionary stable strategy (ess).

A reduced predator–prey model was derived by Auger et al. (2006) applying the
aggregation technique (Auger et al. 2008) leading to a model with two state variables
only: the size of the prey population and the size of the whole predator population
instead of three for the sizes of the prey and the hawk predators and dove predators sep-
arately. A time-scale separation argument was used where the (searching, feeding and
defending) processes at the individual level are faster than the (growth and reproduc-
tion) processes at the population level. This resembles the derivation of the “Holling
disk-equation”. In this paper we extend these analyses for cases when the time-scale
separation is not allowed. Furthermore we re-analyse the periodical oscillation solu-
tions which occur with nutrient enrichment: a phenomenon related to the ’paradox of
enrichment’ predicted by the classical predator–prey Rosenzweig–MacArthur models
(Rosenzweig and MacArthur 1963).

The main aim of this paper is to compare the RD-modelling described in the books
by Hofbauer and Sigmund (1998) and Gintis (2000) with the AD-modelling studied
(Metz et al. 1992, 1996; Dieckmann and Law 1996; Geritz et al. 1998, 1999; Der-
cole et al. 2003; Troost and Kooi 2007), for eco-evolutionary processes here applied
for modelling the behavioral (fighting) process. The main reasons to formulate an
alternative modelling approach for the RD-modelling are: the definition of fitness is
sometimes problematic, a proper mechanistic underpinning for the replicator equa-
tion is missing, feedback via the environment is missing, no possibility of evolutionary
branching and no mathematical tool to study convergence stability (related to whether
an ess is reachable or not). The relationship between these two approaches for discrete
time systems with non-overlapping generation was already studied by Dieckmann and
Metz (2006). Here we consider, however, a continuous-time system with overlapping
generations.

In the AD-approach a variant population of individuals playing an adapted strategy
with a trait value close to that of the resident population may invade and success-
fully replace the resident population leading to a change in the trait. A series of such
replacements changes the trait forming a substitution sequence that can lead to con-
vergence to the singular strategy ss: in general a continuously stable strategy (css)
where the resident population is not invasible by any variant population but here we
will also encounter a ss that is a neutral stable strategy (nss), see Fig. 9b (Geritz et al.
1998). This process can be formulated as an ordinary differential equation, known
as the canonical equation of adaptive dynamics (Dieckmann and Law 1996; Dercole
and Rinaldi 2008; Kisdi and Geritz 2010). Hence, in the AD-approach, the contest
process (fighting between two predator individuals for captured prey individuals) is
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complementary to the ecological processes (searching, ingestion, assimilation, growth,
maintenance, mortality).

We demonstrated previously (Kooi and Troost 2006; Troost and Kooi 2007), that
most of the AD problems can be re-formulated in bifurcation theory quite naturally,
which increases generality and allows the inclusion of ecological implications [(for
instance (co-)existence, oscillatory dynamics]. The trait values of the resident and the
variant population are the bifurcation parameters. The so called pip-plots (pairwise
invasibility plot Geritz et al. 1998) show in the trait space, spanned by the resident and
variant traits, where either the resident population wins, the variant population wins
or both populations coexist. These regions are separated by transcritical bifurcation
curves. Moreover we also include Hopf bifurcation curves in the pip-plots. Then in
some regions of the trait space the resident or the variant population wins or both
populations coexist while the predator–prey system oscillates periodically.

The long-term dynamics of the predator–prey system is obtained by numerical
bifurcation analysis. Similar as in the predator–prey Rosenzweig-MacArthur model
(Rosenzweig and MacArthur 1963) for low carrying capacities there is a stable equi-
librium for the prey population alone. When the prey carrying capacity is sufficiently
high, a stable coexistence of both prey and predator populations either at equilibrium
or a limit cycle when the carrying capacity is very high.

We will here demonstrate that he RD- and the AD-approach lead to the same
results for the system in equilibrium whereby in the RD-approach there is an ess
and in the AD-approach a nss. When periodical predator–prey solutions occur for
higher carrying capacities, the AD-approach results differ from those for the RD-
approach. In the AD-approach there is a css for a monomorphic prey population
while in the RD-approach during one period switches occur between monomorphism
and dimorphism back and forth when the amplitude of the limit cycle is sufficiently
large. The introduction of an addition stage in feeding prey (namely fighting besides
feeding) appears to have a stabilizing effect that is depending of the costs. Furthermore,
elaboration of the AD-approach yields that two predator populations with different
trait values and feeding on a single prey population can coexist stably: contrary to the
competitive exclusion principle.

2 Problem formulation and analysis methods

We consider a predator population p, with density p(t) feeding on a prey population
n, with density n(t) model. The prey grows logistically in absence of the predator.
A searching predator S individual becomes feeder F after meeting a prey individual
(second order mass action process with rate a). It starts to handle the prey but does
not directly digests it.

If during this handling phase the individual does not encounter a searching predator
it digests the prey (includinggrowth and/or reproduction) andbecomes a searcher again
(first order process with rate β). These Holling type II searching and feeding processes
are described using a pseudo-reaction scheme as follows:

S + n
a−→ F, F

β−→ S
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Observe that the encounters are inter-specific between predator individuals and prey
individuals.

On the other hand if during this handling phase the individual encounters a searching
predator (second ordermass action processwith rateb) they becomedefendersD.After
fighting and handling they digest their gain (including growth and/or reproduction)
and become searcher S again (first order process with rate γ ). The gain depends on
whether the individual plays the hawk H or dove D tactics and therefore we distinguish
six compartments, searcher, feeders and defenders each either hawk or dove: S=
SH+SD, F=FH+FD and D=DH+DD where the first letter indicates the stage S,
F or D and the second the tactics (H or D).

Then searching and feeding processes are described using

SH + n
a−→ FH, FH

β−→ SH

SD + n
a−→ FD, FD

β−→ SD

and fighting for captured prey is described using a pseudo-reaction scheme as follows:

FH + S
b−→ DH

SH + F
b−→ DH, DH

γ−→ SH

FD + S
b−→ DD

SD + F
b−→ DD, DD

γ−→ SD

Observe that these encounters are intra-specific and that the process rates for the
different combinations are the same.

The profit for the two fighting individuals after the contest is given in the so called
pay-off matrix introduced in game theory (Hofbauer and Sigmund 1998)

DH DD

A =
(

(G − C)/2 G
0 G/2

)
DH
DD,

(1)

where G is the gain and C the costs. A continuous-time version of this classical
hawk–dove game is used (see also Gintis 2000). The gain (now per time) for the
individuals from this contests is obtained using the elements of the pay-off matrix
depending on the tactics of the individual and that of the opponent. The hawk–dove
strategy of a population consisting of individuals playing the hawk or dove tactics,
is described by the proportion of hawks, a scalar, being the continuous trait of this
frequency-dependent problem.

We will formulate and discuss two models to describe the dynamics of this (in our
case predator) population trait: the RD- and the AD-approach. Crucial is the definition
of the fitness and the trait besides the functional dependency of the fitness on the trait
(see also McGill and Brown 2007). In general the fitness of the population W is
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formulated as a function of the trait value of a variant (individual or population) ρm ,
the trait value of the resident population ρr and the size of this population p (which
in our case depends also on prey density n, but in general also on other environmental
factors): that is W (ρm, ρr , p).

In life history theory evolution the fitness W (ρr ) is maximized. The trait is a life
history characteristic, for instance investments in reproduction, and a suitable fitness
function is for instance the per capita growth rate. Then

dW

dρr
= 0, (2)

is solved using optimization methods.
In the evolutionary game theory the fitness, W (ρm, ρr ), is the rate of invasion of

a variant individual into the resident population. It depends on the trait of a variant
individual ρm and the trait of the resident population ρr which is the average trait value
of the resident population individuals when the resident population shows variation.
The size of the population p is constant and no feedback from the environment is
take into account. That is the behavioural learning process occurs as if the defending
population is isolated from the rest of the predator–prey system.

The temporal change in the trait is in the direction of and proportional to the slope of
the fitness function, ∂W/∂ρm . An ess is the trait value where the fitness is highest and
where no variant individual can invade. So, the variant individual is not interacting in a
pair-wise fashionwith other individuals but interacts with thewhole population having
a average trait. The fitness measures the rate of invasion of a rare variant individual
into the resident population. Then the ess where ρr = ρ∗ is obtained at:

∂W (ρm, ρr )

∂ρm

∣∣
ρr=ρ∗ = 0 (3)

evaluated at ρ∗ while

∂2W (ρm, ρr )

∂ρm2

∣∣
ρr=ρ∗ < 0 (4)

guarantees an evolutionary stable equilibrium ess. Observe that resistance to invasion
here says nothing about what would happen if the population starts nearby this point.
Often this ess point is also the equilibrium of the replicator equation (see Hofbauer
and Sigmund 1998) which is a ordinary differential equation for the trait ρr :

dρr

dt
= ρr (W (ρm, ρr ) − W (ρr )

)
, (5)

where W (ρr ) is the average fitness of the population or, when the resident population
shows variation, the fitness of an individual with the average trait ρr .

In the RD-approach the ecological model and the contest model are kept separated
because the size of the population is kept constant with the derivation of the replicator
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equation. When the trait dynamics can be assumed to be fast we have an algebraic
expression for the trait as a function of the gain and costs (probably time-dependent).
That is, the ess trait value is then adapted instantaneously to the gain changes (costs
are constant here).

In the adaptive dynamics (AD) theory the fitness, W (ρm, ρr , p), is now the rate
of invasion, generally denoted by s, of a rare variant population into the resident
population. Now the population is not strictly constant in size and all interactions
between the populations and the environment are taken into account. The canonical
equation derived byDieckmann andLaw (1996) describes the dynamics of the resident
trait as a continuous flow in the trait space by

dρr

dt
= k

∂W (ρm, ρr , p)

∂ρm

∣∣ρr . (6)

This formulation is derived as a deterministic approximation of a sequence of trait
substitutions as a random walk in the trait space determined by the processes of
mutation and selection (competition). The rate constant k gives the “speed” of the
time-evolution where trails are random (see Dieckmann and Law 1996). This factor
describes characteristics of the random mutational process of choosing the variant
trait value ρm for the next evolutionary step. In conclusion, the trait changes with a
rate proportional to the fitness gradient and the endpoints is reached when the fitness
gradient is zero.

Hence, a ss trait value is fixed by a zero fitness gradient and the same expression as
Eq. (3) applies.ByGeritz et al. (1998) eight different ss’s are distinguishedbasedon the
second derivatives at the point which differ in general from Eq. (4). It appears that the
slope of the non-trivial zero contour line evaluated at a ss determines for themonomor-
phic population already the evolutionary dynamics in the neighbourhood of the ss.
These eight different ss’s (Geritz et al. 1998) were illustrated using pip-plots. These
plots show in the trait space (ρm, ρr ) where either the resident population wins, the
variant population wins or both populations coexist all in equilibrium or periodic solu-
tion of the full ecological system. These regions are separated by zero growth curves.

According to Feldman and Aoki (2006), Aoki and Feldman (2006) learning is a
means of acquiring information about the environment and of expressing a phenotype
(behavior) appropriate to that environment. Two forms of learning are distinguished
by the source of the information acquired. Individual learning (IL) occurs when an
organism depends on its personal experience to gather the information directly from
the environment. The second form of learning is social learning (SL), which occurs
when an organism obtains the information indirectly by copying other organisms, e.g.,
by imitation. With learning, choosing the variant trait values can be either randomly
(likemutations) or deliberately based on the assessment of the outcome. In the book by
Hofbauer and Sigmund (1998) it is mentioned that when traits are myopic in learning
models the variant trait values are only in the immediate vicinity of the resident trait
value. When furthermore allowing infinitesimal small continuous trait changes this
could be implemented by reducing k when the ss-point is approached. Note that
generally in the AD formulation only small but discrete mutational steps are assumed
(Geritz et al. 1998).
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Although we use terminology from evolutionary game theory we apply the
same ideas here for the analysis of ecological behaviour processes. With behavioral
processes such as fighting, the strategic change of the trait is by learning, using the out-
come of the contests. These changes occur at a time scale relatively fast with respect to
the ecological population time scale, in contrast to genetic changes by mutations at the
generation time scale. Notwithstanding that the biological motivation and justification
of the applicability of the approaches differ, the mathematical and analysis tools are
the same.

To analyse these models we use bifurcation theory which focuses on the qualita-
tive changes in the stability and type of asymptotic solutions of the system (steady
states, periodic cycles, chaos) under parameter variation. The basics of bifurcation
analysis are described in the books (Guckenheimer and Holmes 1985; Wiggins 1990;
Kuznetsov 2004). Examples of ecological applications of bifurcation analysis are
given in (Bazykin 1998; Kooi 2003) and of AD in (Dercole and Rinaldi 2008; Kooi
and Troost 2006; Troost and Kooi 2007). The asymptotic behaviour of the model has
been analyzed using the symbolic analysis software Maple (Maple 2008) and the
numerical bifurcation analysis software auto (Doedel and Oldeman 2009). With the
studied predator–prey model we found only the transcritical bifurcation (for equilibria
and limit cycles), TC , and the Hopf bifurcation, H . At a TC point one population
invades an existing systemwhile at a H bifurcation an equilibrium of the system looses
its stability and a limit cycle emerges under parameter variation.

In the RD-approach the governing equations are all ode’s whether the replicator
equation, which is an ode to describe the dynamics of the trait, is used or directly the
quasi-static ess trait value is substituted in the predator–prey system. The same type
of bifurcation analysis can be done as by Auger et al. (2006). For the AD-approach
application of the bifurcation theory is different when the time-scale separation argu-
ment holds or not. When not and the canonical equation is used then again all the
equations are ode’s, see Dercole and Rinaldi (2008) for many examples. When the
learning process is fast, however, the outcome of the competition between the resident
and variant, treated as long-term dynamics results, are presented in pip-plots where
the two traits of the resident and variant are the bifurcation parameters. The ss point
is the intersection of two transcritical bifurcation curves. Then, one can still do one
bifurcation analysis for the behavioural and ecological model combined. This tech-
nique was already explored by Kooi and Troost (2006) and Troost and Kooi (2007)
and will be elaborated below.

3 Mathematical model formulation and results

In this section we formulate the models and analyse the resulting equations. The RD-
approach and the AD-approach will be discussed in sequence.

3.1 Replicator dynamics (RD) model

Figure 1 illustrates the fluxes between the six predator compartments: SH, SD, FH,
FD, DH and DD. The fluxes between the sub-populations follow from mass-action

123



Modelling the dynamics of traits involved in fighting-predators–prey system 1583

DH

FH

DSHS

FD

DD

bppSpFH bppSpFD

apnpSH

searching

defending

strategy exchange

γppDH γppDD

apnpSD
bppFpSDbppFpSH

βppFDβppFH

c((Au)H − uTAu) c((Au)D − uTAu)

feeding

Fig. 1 The predator fluxes between the six compartments in the RD-approach. The fluxes except those
between defending individuals, are due to encounters between predator individuals in a different behavior
stage or between a predator individual and a prey individual modeled by the law of mass-action. The fluxes
between the two defending stages are due to the change of tactics (hawk or dove)

arguments or game theoretical expressions for the outcome of the contests in the
defending stage where the individuals can change their tactics via learning and sub-
sequently change the strategy of the predator population.

The pay-off matrix for the contest between two individuals in the defender state
are that of the hawk–dove model given in Eq. (1). The gain G is the average amount
of prey individuals that two predators dispute per unit of time. When two hawks fight,
they can get wounded. Let C be the cost due to fighting between hawks per a pair of
defending predators and per unit of time.C is a positive parameter which is allowed to
be larger than the gain G. The strategy of a population is determined by the proportion
of hawks in the population treated as its trait ρ.

The outcome of these individual contests leads to the following game theoretical
model for the population of defenders pD = pDH + pDD with proportions hawk
ρ = pDH/pD and doves 1− ρ = pDD/pD with pay-off matrix A Eq. (1) and vector
u = (ρ, 1 − ρ)T :

(Au)H = G − C

2

pDH

pD
+ G

pDD

pD
= ρ

G − C

2
+ (1 − ρ)G, (7a)

(Au)D = G

2

pDD

pD
= (1 − ρ)

G

2
, (7b)

and the average gain for the whole population reads

uTAu = pDH

pD
(Au)H + pDD

pD
(Au)D = G

2
− C

2

p2DH

p2D
= G

2
− ρ2C

2
. (8)

From Eqs. (7, 8) we derive

(
(Au)D − uTAu

)
pDD + (

(Au)H − uTAu
)
pDH = 0. (9)
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The equations for the defending population pD related to changing the strategy read
(Auger et al. 2006)

dpDD

dτ
= c

(
(Au)D − uTAu

)
pDD = − c

2
ρ(G − ρC)pDD, (10a)

dpDH

dτ
= c

(
(Au)H − uTAu

)
pDH = c

2
(1 − ρ)(G − ρC)pDH , (10b)

where c is a rate-coefficient of the change of tactics. We recall that (Au)D (resp.
(Au)H ) represents the average prey density that dove (resp. hawk) predators dispute
per unit of time. We must multiply these quantities by their densities to obtain the
total prey density density ingested by the dove and hawk searching sub-populations
yielding their gain per unit of time. Hence both populations sizes pDH , pDD become
time independent when their average gain Eq. (7) equals the average of the whole
population Eq. (8). Adding the two equations Eq. (10) gives, using Eq. (9), that the
densities of defending predators individuals pD = pDH + pDD does not change due
to the fact that some individuals alter their tactics. Then we get the classical replicator
dynamics equation for the continuous trait ρ, the proportion of density of hawks:

dρ

dτ
= c

(
(Au)H − uTAu

)
ρ = c

2
ρ(1 − ρ)(G − ρC). (11)

This replicator dynamics equation has three equilibria ρ∗ = 0, ρ∗ = 1, ρ∗ = G/C .
Since ρr ∈ [0, 1] and we assume C > 0 and G ≥ 0 this yields the ess:

ρ∗ = pDH

pD
=

{
G
C if 0 ≤ G < C

1 ifG > C.
(12)

By Auger et al. (2006) the following model is formulated and analysed:

dn

dτ
= ε

(
rn(1 − n

K
) − anpS

)
, (13a)

dpSD
dτ

= −bpF pSD − anpSD + βpFD + γ pDD

+ ε
(
α (βpFD + (Au)D pDD) − μpSD

)
, (13b)

dpFD

dτ
= −bpS pFD + anpSD − βpFD − εμpFD, (13c)

dpDD

dτ
= bpF pSD − γ pDD + bpS pFD + cpDD

(
(Au)D − uTAu

) − εμpDD,

(13d)

dpSH
dτ

= −bpF pSH − anpSH + βpFH + γ pDH

+ ε
(
α (βpFH + (Au)H pDH ) − μpSH

)
, (13e)

dpFH

dτ
= −bpS pFH + anpSH − βpFH − εμpFH , (13f)
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dpDH

dτ
= bpF pSH − γ pDH + bpS pFH + cpDH

(
(Au)H − uTAu

) − εμpDH .

(13g)

where α is the prey–predator efficiency coefficient and μ the predator death rate.
We assume two different time scales. The fast time scale (with fast time variable t)
corresponds to the inter-specific searching and handling for the prey by the predators.
The slow time scale (with slow time variable τ ) corresponds to the (logistic) growth of
the prey population and mortality of the predator. The parameter ε controls the degree
of time separation.

The first contribution in Eqs. (13d) and (13g) is the flux of prey density when dove
(resp. hawk) predators return from finding to searching without encountering another
individual. These prey density flux are βpFD for doves (resp. βpFH for hawks). The
second contribution in Eqs. (13b) and (13e) corresponds to prey density obtained as
gain by fighting: (Au)D pDD for doves (resp. (Au)H pDH for hawks) and given in
Eq. (7). The contribution described by Eqs. (13d) and (13g) correspond to the strategy
exchange which is given in Eq. (10).

Summation of the searchers pS , feeders pF and defenders pD in Eqs. (13b–13g)
gives

dn

dτ
= ε

(
rn(1 − n

K
) − anpS

)
, (14a)

dpS
dτ

= −bpF pS − anpS + βpF + γ pD + ε
(
α (βpF + (uTAu)pD) − μpS

)
,

(14b)

dpF
dτ

= −bpS pF + anpS − βpF − εμpF , (14c)

dpD
dτ

= 2bpF pS − γ pD − εμpD, (14d)

together with Eq. (8) that describes the term uTAu. Hence, reduction to the four
dimensional system for n, pS , pF and pD is possible. By Auger et al. (2006) the
following expression for the gain G was derived being the amount of prey a single
defending predator disputes, which is the amount of prey per unit of time that is
obtained by a pair of defending predators

G = 2b
pF pS
pD

. (14e)

Observe that in this paper the gain G is defined as in Auger et al. (2006), Eq. (8) and
not as in Auger et al. (2002), Eq. (2). This gain (in general density-dependent) is used
to calculate the average gain for the whole population:

uTAu =
{

G
2 − ρ2 C

2 ifG < C
G
2 − C

2 ifG > C,
(14f)
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where the dynamics of the trait ρ is described by the replicator equation (an ode)
given in Eq. (11). Observe that using Eq. (14d) we get in equilibrium

G∗ = γ + εμ, (15)

and this expression will be used below with the analysis of equilibrium states.
When the time-scale separation argument is used, the processes described in

Eqs. (14) by the expressions on the right-hand sides and before the ε terms, run at
the fast time scale and model, at the individuals level, the dynamics in the searching,
feeding and defending stages. The terms multiplied by a factor ε run at the slow time
scale and model the population dynamics with growth and/or reproduction, and death.
Hence for ε = 0 the fast time scale formulation applies yielding the reduced model
formulation discussed by Auger et al. (2006) and in the Appendix, while ε = 1 (and
τ = t) in the full model formulation.

3.2 RD-results

The long-term dynamics predicted by the RD-models are presented in two parameter
bifurcation diagrams where the game costs C and the prey’s carrying capacity K as
free parameters.

In Fig. 2 the results are shown in for the reduced predator–prey system Eq. (28)
where c = ∞ and ε = 0. This model is described by Auger et al. (2006) and in
the Appendix. The parameter values are given in Table 1. The rate of change of the
tactics is fast, c = ∞, so that we can use for the gain equilibrium Eq. (27c), that is
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Fig. 2 Two-parameter bifurcation diagram C versus K for the reduced system Eq. (28) where ε = 0 with
G given in Eq. (27c). Below the transcritical bifurcation curve TC only the prey survives and above this
curve there is bith prey and predator exist. In the region between the TC curve and the Hopf bifurcation
curve H a stable equilibrium and above the curve H a stable limit cycle exist. The dashed vertical curve at
C = 1 separates the regions were the predator population is monomorphic G > C and dimorphic G < C .
Parameter values as given in Table 1
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Table 1 List of symbols for variables and parameters used in the text

Symbols Value Description

n, p Variable Population: prey, predators

pi , p j , pi j Predator stage sizes, i ∈ {D, H} and stage j ∈ {S, F, D}
S, F, D – Stage: searching, feeding, defending

D, H – Tactics: dove, hawk

r,m – Population: resident, variant

a 1 Encounter rate between searcher individuals and prey

b 1 Encounter rate between predator individuals

c ∞ Rate of change of tactics (RD) or trait (AD)

C Variable Costs rate in game dynamics

G 1 Gain rate in game dynamics

K Variable Prey carrying capacity

r 1 Prey intrinsic growth rate

se, sc Variable Invasion rate for equilibrium and limit cycle

T0 Variable Period of a limit cycle

t Variable Slow time

α 1 Efficiency coefficient conversion prey–predator

β 1 Predator feeding rate (reciprocal of handling time)

γ 1 Intra-specific predator fighting rate

δ 0.02 Numerical parameter

ε 0 or 1 Rate of inter-specific predator–prey interaction

ρ Variable Trait

μ 0.5 Predator death rate

τ Variable Fast time

Stages: S, F, D and defender individual tactics: D, H . The strategy of the populations are described by the
trait ρ the proportion of defender individuals playing the hawk tactic. Notice that in this theoretical study
the parameter values are not related to a specific application and therefore the units are not given

G = γ = 1. These results were already obtained and discussed by Auger et al. (2006)
and are used here for comparison.

The bifurcation diagram Fig. 3 is obtained for the system Eq. (14) where ε = 1
and c = ∞, that is with a quasi-static ess trait ρ∗ given by Eq. (12). Observe that
the bifurcation pattern is the same as that of the reduced system Eq. (28) shown in
Fig. 2. Here the size of the gain changes when the costs are varied and therefore the
gain is now given by Eq. (14e) instead of Eq. (27c). Consequently the separator where
the population switches from monomorphic (G > C) to dimorphic (G < C) or visa
verse, occurs at C = G = γ + εμ (see Eq. (15)) and not as in Fig. 2 where it occurs
at C = G = γ (see Eq. (27c)). Here for K = 2 and all other parameter given in
Table 1, at C = γ + εμ = 1.5 instead of C = γ = 1 as in (Auger et al. 2006). The
Hopf bifurcation curves are at higher carrying capacity K values, so there is a stable
equilibrium in a larger C–K parameter region.

The solutions of the system Eq. (14) where ε = 1 and c = ∞ where close to those
for the system with c = 1 (results are not shown). Furthermore only slightly different
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Fig. 3 Two-parameter bifurcation diagram C vs K for the system Eq. (14) where ε = 1 with G given in
Eq. (14e). Parameter values as given in Table 1 and see Fig. 2 for an explanation of the symbols
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Fig. 4 One-parameter diagrams for the prey population n and predator sub-population densities pS , pF ,
pD as function of the carrying capacity K for the RD-approach, system Eq. (14). Below the transcritical
bifurcation point TC all predator sub-populations are zero: that is the predator population is extinct. Between
TC and the Hopf bifurcation point H a stable equilibrium and above H a stable limit cycle exists. Parameter
values as given in Table 1 where A: C = 2 and B: C = 1

results occur when the system is periodically oscillating. Hence, the assumption using
a quasi-steady state trait value Eq. (12) where learning is fast instead of the trait
described by a replicator equation Eq. (11) is justified.

We finish the discussion of the RD systemwith showing the one-parameter diagram
with the prey’s carrying capacity K as free parameter for the densities n, pS, pF , pD
where ε = 1, c = ∞ and C = 2 the same as shown in Fig. 4a. Here we started
from the stable equilibrium at K = 2. For decreasing K at the transcritical bifurcation
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TC the predator population goes extinct whereby all three sub-populations disappear
simultaneously. For values above the Hopf bifurcation H where the equilibrium is
unstable and stable limit cycles occur. In this dimorphic case where G < C the trait
is time dependent and is adapted instantaneously. For C = 1 where we are in the
region where G > C and the population is monomorphic, the dynamical patterns
are shown in Fig. 4b. However, with increasing K the amplitude of the limit cycle
solution increases and at about K = 16.63 during one period switches occur between
monomorphism and dimorphism back and forth.

We will use the results given in Figs. 3 and 4 for comparison of the results of the
RD versus AD approach in Sect. 4.

3.3 Adaptive dynamics (AD) model

Figure 5 illustrates the fluxes between the compartments where we augmented the res-
ident system, shown in Fig. 1, in order to account for the variant population dynam-
ics. The single difference between the resident and the variant population is their
trait value denoted by ρr and ρm , being the proportions of the hawk individuals in
the defending stage. For the resident sub-population the p-fractions are indicated by
a superscript r and for the variant sub-populations by a superscript m. The fluxes
between the sub-populations include interactions between the searching and feeding
variant and resident individuals by introducing pS = prSD + prSH + pmSD + pmSH and
pF = prFD + prFH + pmFD + pmFH .

There is in the AD approach no change of tactics in the defending stage as was
the case in the RD approach. In the AD-approach this change is due to competition
between the resident and a variant population when the variant population invades
and replaces the resident population. Hence, in order to find the solution for the game
equilibrium we test whether the variant being rare can invade the system consisting of
the prey and the resident predator. Similar to the fast rate of change of tactics in the
RD approach where c = ∞, here we will assume that the trait value changes due to
the competitions outcome occur at a fast time scale.

γprDH

bpSp
r
FH

anprSH
bpFprSH

FHr

SHr

DDr

FDr

SDr SDm

FDm

DDmDHm

FHm

DHr

SHm

βprFH

γprDD

bpSp
r
FD

βprFD

anprSD
bpFprSD

Fig. 5 The predator fluxes between the twelve compartments in the AD approach where each of the six
resident compartments have a variant version. Compare this scheme with that for the RD approach given in
Fig. 1. Here, a searching resident individual in prSH + prSD can encounter a feeding variant individual in
pmFH + pmFD and both move all to their defending states prDH , prDD , p

m
DH and pmDD respectively, and start

to fight. The same holds for a searching variant individual which encounters a feeding resident individual
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The equations for the predator–prey system are:

dn

dτ
= ε

(
rn(1 − n

K
) − an(prSD + prSH ) − an(pmSD + pmSH )

)
, (16a)

dp j
SD

dτ
= −bpF p

j
SD − anp j

SD + βp j
FD + γ p j

DD

+ ε(α
(
βp j

FD + (Au)D p j
DD

) − μp j
SD), (16b)

dp j
FD

dτ
= −bpS p

j
FD + anp j

SD − βp j
FD − εμp j

FD, (16c)

dp j
DD

dτ
= bpF p

j
SD − γ p j

DD + bpS p
j
FD − εμp j

DD, (16d)

dp j
SH

dτ
= −bpF p

j
SH − anp j

SH + βp j
FH + γ p j

DH

+ ε(α
(
βp j

FH + (Au)H p j
DH

) − μp j
SH ), (16e)

dp j
FH

dτ
= −bpS p

j
FH + anp j

SH − βp j
FH − εμp j

FH , (16f)

dp j
DH

dτ
= bpF p

j
SH − γ p j

DH + bpS p
j
FH − εμp j

DH (16g)

where j ∈ {r,m}.
Note that a resident individual in prSH + prSD can encounter a feeding variant

individual in pmFH + pmFD and both move all to their defending states prDH , p
r
DD ,

pmDH and pmDD respectively, and start to fight. The same holds for a searching variant
individual which encounters a feeding resident individual. The equations for all sub-
populations are now split up into the resident, prD = prDD + prDH , and the variant,
pmD = pmDD+pmDH , sub-populations. The trait of the variant equalsρ

m = pmDH/pmD and
thenwe have 1−ρm = pmDD/pmD . For the total population we introduce pS = prS+ pmS
and pF = prF + pmF besides pD = prD + pmD . Then the gain G is given by Eq. (14e):
G = 2bpF pS/pD .

The average gain of the hawk (resp. dove) equal (Au)H (resp. (Au)D) are the sum
of the resident and variant populations. These two expression are using the elements
in the pay-off matrix in Eq. (1):

(Au)H = G − C

2

ρr prD + ρm pmD
pD

+ G
(1 − ρr )prD + (1 − ρm)pmD

pD
, (17a)

(Au)D = G

2

(1 − ρr )prD + (1 − ρm)pmD
pD

. (17b)

These expressions are equal for both resident and variant populations. The expres-
sions for the different average gains for the two whole resident and variant populations
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are

(uTAu)r = (Au)Hρr + (Au)D(1 − ρr ), (18a)

(uTAu)m = (Au)Hρm + (Au)D(1 − ρm). (18b)

They show the dependency of the two trait values ρr and ρm .
The dynamics of the three sub-populations {S, F, D} each can be reduced to the

following set by adding the hawks and doves versions:

dn

dτ
= ε

(
rn(1 − n

K
) − anprS − anpmS

)
, (19a)

dp j
S

dτ
= −bpF p

j
S − anp j

S + βp j
F + γ p j

D + ε(α
(
βp j

F + (uTAu) j p j
D

) − μp j
S),

(19b)

dp j
F

dτ
= −bpS p

j
F + anp j

S − βp j
F − εμp j

F , (19c)

dp j
D

dτ
= bpF p

j
S − γ p j

D + bpS p
j
F − εμp j

D, (19d)

for the resident population, j = r , and the variant population, j = m.
In order to find the singular strategy ss we are looking for transcritical bifurcations

where both trait valuesρr andρm as free parameters. The resulting bifurcation diagram
is the pip-plot. It is a convenient graphical tool to study the adaptive dynamics of a
trait. In the next two sub-sections we will analyse the equilibrium and limit cycle case.

3.3.1 Trait dynamics analysis: equilibrium

We start with the analysis of the AD-model Eqs. (19) using symbolic analysis and
with the computer package (Maple 2008). We are interested in the equilibrium values
obtained by solving the set of equation where the right-hand sides of system (16) are
zero. We are especially interested in the stability of the boundary equilibrium where
the variant population is extinct.

The non-zero elements in the Jacobian matrix evaluated at the equilibrium where
the variant population is absent are indicated in:

n prS prF prD pmS pmF pmD

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)
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The matrix has the following shape

J =
(
J44 ∗
0 J33

)
. (21)

We are interested in the rate of invasion of the variant population into the environment
where the resident population exists stably. We define the “invasion fitness” denoted
by se(ρr , ρm) now as follows:

se(ρ
r , ρm) = λ1, (22)

where λ1 is the real dominant eigenvalue of the Jacobian matrix J evaluated at the
boundary equilibrium where the variant population is absent.

The ss is now fixed by the two equations:

se(ρ
r , ρm)|pmS =pmF=pmD=0 = 0, (23)

se(ρ
r , ρm)|prS=prF=prD=0 = 0, (24)

where both equities fix a codimension-one transcritical bifurcation curve in the bifur-
cation diagram (ρr , ρm) and hence the ss is the intersection of these two curves.

We can use the special shape of the Jacobian matrix to get analytical expressions
for the solution of these equation. We start with the calculation of det J which equals
the product of all eigenvalues. Linear Algebra learns that for matrices given in Eq. (21)
we have det J = det J44 × det J33. We know that det J44 �= 0 for parameters in the
region where the equilibrium is stable (eigenvalues are strictly negative or have strictly
negative real parts). Hence, we are looking for parameters where

det J33 = 0.

Using Maple (2008) we found the following expression for ρr as the solution of
this equation

ρr = γ + εμ

C
, (25)

for all 0 ≤ ρm ≤ 1. It is important to notice that the right-hand side does not depend
on ρm the second bifurcation parameter and hence the ss occurs at ρ∗ = ρm = ρr .
Furthermore this shows that the ss does not depend on the carrying capacity K .

In order to explain these results we show the pip-plot in Fig. 6 forC = 2, K = 2 and
the other parameter values given in Table 1. In this figure the transcritical curve TC2
is a vertical line where ρr

TC = ρ∗ = 0.75 given by Eq. (25). Using mutual invasibility
of the variant population by the resident population gives also the horizontal curve
TC1. The intersection at the diagonal is the ss. The arrows show the dynamics of the
trait by a step-wise change along the diagonal toward the ss. We assume that each
step is an elementary step in a learning process in which the fractions of the hawks
and doves in the defending population adapt. The convergence along the diagonal in
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Fig. 6 Pairwise invasibility plot
(pip) for system Eq. (19) plotting
the invasion fitness of a variant
population with trait value ρm

invading a resident population
with trait value ρr . The curves
TC1 and TC2 are transcritical
bifurcation for equilibria curves
which are vertical and horizontal
straight lines. Point ss (a neutral
stable strategy, nss) and is the
intersection of these two lines at
ρr = ρm = G/C = 0.75. The
arrows illustrate an invasion step
to wards the ss. Parameter
values as given in Table 1 and
C = 2, K = 2
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the pip-plot is assumed fast because the adaption steps are assumed to be small while
the replacement of the resident population by the variant population due to learning is
assumed to be very fast. This is related to the assumption that the intra-specific fighting
between the predators occurs at a fast time scale where c = ∞ in the RD approach.

Observe that invasion of the variant population is related to the zero eigenvalue on
the TC2 curve where pmS = pmF = pmD = 0. Hence, the boundary space where the
variant invades is three dimensional and not one, as expected for the invasion of one
predator population. The interpretation of the rate of invasion is now related to the
growth rates of the three compartments where both hawks and doves in each of these
compartments are invading whereby their ratio is prescribed by the trait-value ρm .

The parameter space (ρr , ρm) is divided in three different regions: ‘+’-the variant
can invade and replaces the resident, ‘−’-the variant cannot invade and goes extinct,
‘++’-the variant can invade but cannot replace the residentwhich leads to coexistence.
However, the transcritical bifurcations that separate these different regions are vertical
and horizontal lines and therefore the curves in Fig. 6 show that the ss is neutral stable
(see also Geritz et al. 1998, Fig. 9b).When in the learning process the trails are myopic
the steps along the diagonal become smaller and smaller when approaching the nss
point, and it will effectively be a css point and an end-point. When on the other hand
these steps are randomandfinite, the systementers the coexistence region ‘++’ and the
population becomes a coalition and the nss point on the diagonal is not the end-point.
Then we have to consider the invasion of this coalition of two resident populations by
a variant population. By simulation we found that introduction of a variant population
with arbitrarily trait value, leads to convergence to a new interior point where all
compartments are positive but this equilibrium point is neutral stable (that is one
eigenvalue is zero). When invasion of this coalition between three populations by
a next variant with an arbitrarily trait value we obtained the same result, now four
predator populations can coexist, and again the equilibrium is neutral but now two
eigenvalues are zero. These results suggest that the nss is invasible by new variants.
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Fig. 7 Two-parameter diagram C versus ρr for system Eq. (19). This is the approximation of the
codimension-two ss point as the intersection point of the two transcritical bifurcation lines TC1 and TC2
shown in Fig. 6 starting for C = γ + εμ = 1.5 at ρ∗ = G/C for C = 2. The analytical expression for the
curve is min(1,G/C) where G is given in Eq. (14e). Parameter values as given in Table 1 with K = 2

However, when the next variant population lies in the ’+’-region of the pip-plot, then
this variant will out-compete all the other resident populations and the whole process
of invasion, replacement, coexistence and so on, starts all over again. This shows that
there will be episodes with coalition between many populations with different trait
values, but the varying trait values will stay close to the nss point.

In Fig. 7 we plotted the ρ∗-value for the ss as a function of the costs C for K = 2
where the system is in equilibrium. First the transcritical bifurcation TC2 with ρr as
bifurcation parameter and simultaneously varying ρm = ρr − δ was found (see Fig. 6
with C = 2 and K = 2). Here δ is a small, arbitrarily numerical parameter. Then we
continued this transcritical bifurcation where pmS = pmF = pmD = 0 with C and ρr and
ρm = ρr −δ the two varying parameters starting fromC = 2 while K = 2 fixed.With
this C-value we have ρ∗ < 1, so the dimorphic case with hawks and doves. Lowering
C , ρ∗ becomes 1 atC = γ +εμ = 1.5 where we have the switch to the monomorphic
case with only hawks. Numerically we found that this curve for all C is indeed close
to the graph of the relationship ρ∗ = G/C where G is given in Eq. (14e).

These results hold only when the long-term dynamics of the predator–prey system
is a stable equilibrium. In the next section we discuss the case where the long-term
dynamics is a limit cycle.

3.3.2 Trait dynamics analysis: limit cycle

We continue with the analysis of the limit cycle case with the example where the
parameter values are C = 2 and K = 20 instead of K = 2 as in the previous section.
Two of the four eigenvalues of matrix J44 in Eq. (21) are complex conjugated with
positive real parts and therefore the equilibrium of the resident population is unstable.
Numerically we found a stable limit cycle (periodic solution) that originates from a
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Hopf bifurcation that is passed when K is increased from K = 2 to K = 20 while
C = 2.

The trait is now the invasion rate sc(ρr , ρm) of the rare variant population via a
boundary limit cycle with period T0:

sc(ρ
r , ρm) = log(μ1), (26)

whereμ1 is the magnitude of the dominant Floquet multiplier evaluated at the periodic
solution of the resident systemwhere the size of the variant population is zero: pmS (t) =
pmF (t) = pmD(t) = 0 for 0 ≤ t ≤ T0 (see also Metz et al. 1992). The biological
interpretation of sc(ρr , ρm) is the average per capita growth rate over one cycle. In
the case of limit cycles no analytical results are available as in the equilibrium case.
However, by replacing eigenvalues by multipliers with their correct interpretation we
can also calculate the transcritical bifurcation curves in a pip-plot using the numerical
bifurcation analysis software auto (Doedel and Oldeman 2009).

The resulting pairwise invasion pip-plot is shown in Fig. 8 for the parameter values
C = 2 and K = 20. The transcritical bifurcations TC j are the zero fitness isoclines
(solid lines) now for limit cycles. The intersection of the diagonal with the other two
curves TC j , j = 1, 2, corresponds to a ss. The parameter space (ρr , ρm) is again
divided in three different regions: ‘+’-the variant population can invade and replaces
the resident, ‘−’-the variant cannot invade and goes extinct, ‘++’-the variant popula-
tion can invade but cannot replace the resident population which leads to coexistence,
a coalition between the resident and the variant population. From the transcritical
bifurcation curves in Fig. 8 we conclude that there is a css (compare with Geritz et al.
1998, Fig. 4 case c). For, these transcritical bifurcations for limit cycles are not vertical
and horizontal as in the case of the transcritical bifurcation curves of the equilibria in
Fig. 6 where C = 2 and K = 2. Therefore this ss is an end-point, that is: the resident
population is non-invasible by any variant population. The arrows show the dynamics

Fig. 8 Pairwise invasibility plot
(pip) for system Eq. (19) plotting
the invasion fitness for a variant
with trait value ρm invading a
resident population with trait
value ρr . The curves TC1 and
TC2 are transcritical bifurcation
for limit cycles curves which are
now not straight lines as was the
case for equilibria given in
Fig. 6. Point ss (a continuously
stable strategy, css) and is the
intersection of these two curves.
The arrows illustrate an invasion
step toward the ss. The
convergence along the diagonal
in the pip-plot is assumed to be
fast. Parameter values as given
in Table 1 and C = 2, K = 20
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Fig. 9 Detail of Fig. 8 the
pairwise invasibility plot (pip)
for system Eq. (19). Also the
two Hopf bifurcations curves
(dotted lines) H1 and H2 are
depicted. Furthermore the line
ρm = ρr − δ (dashed line) is
shown. Along this line in the
interval in the ++ region there
is coexistence. Parameter values
as given in Table 1 and C = 2,
K = 20
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of the trait by a step-wise change along the diagonal towards the ss point and close to
the ss coexistence never occurs.

The region close to the ss is shown enlarged in Fig. 9 where also the curves for the
unstable equilibrium are shown. The vertical and horizontal transcritical bifurcation
curves for the equilibria intersect at the unstable equilibrium ss point. This occurs at
the value ρr = ρm = ρ∗ = 0.75 given by Eq. (25). This pattern is the same as that
for the stable equilibria given in Fig. 6 for C = 2 and K = 2.

Furthermore two Hopf bifurcations H1 and H2 are shown. At these points the
boundary equilibrium becomes unstable, at H1 the equilibrium where the variant
population is extinct and at H2 where the resident population is extinct.

We show in Fig. 10 for C = 2 and K = 20 in a one-parameter diagram for the
equilibria where ρr varies along the sub-diagonal line ρm = ρr − δ in the pip-plot
depicted in Fig. 9, the size of the resident, prD , and the variant defending predator
populations, pmD . There is only (unstable) coexistence in the small interval 0.75 ≤
ρr ≤ 0.775 above the unstable ss point at ρ∗ = 0.75.

In Fig. 11 for the same parameter values C = 2 and K = 20, we show the
one-parameter diagram for the limit cycles. Here the maximum and minimum values
are plotted in the regions where the system oscillates periodically below the Hopf
bifurcations H1 and H2.

Above the transcritical bifurcation point TC1 in the ‘+’-region: the variant
can invade and replaces the resident. There the resident population is extinct
prD = 0. Below the Hopf bifurcation H2 the variant population is unstable
and the population oscillates. In the ‘++’-region between the two transcritical
bifurcation points TC1 and TC2, j = 1, 2 the variant can invade but can-
not replace the resident which leads to coexistence where both populations oscil-
late. In the region below TC2, in the ‘−’-region, the variant population cannot
invade and is extinct while the resident population oscillates, see lower panel in
Fig. 11.
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Fig. 10 One-parameter diagram for the resident population prD and variant population pmD , where ρr varies
while ρm = ρr − δ for AD approach system Eq. (19). See Fig. 9 for the pip-plot with the line ρm = ρr − δ.
Only results for the system in equilibrium are shown. Dashed curves show either unstable equilibrium.
Solid curve above H indicates a stable equilibrium, where prD = 0, that is for the variant population only.
Parameter values as given in Table 1 where C = 2.0 and K = 20

The description of the singular strategy ss trait values in this section shows thatwhen
the predator–prey system possesses a stable equilibrium the ss trait value is simply
given by the expression given in Eq. (25) as a function of the parameter values γ, ε, μ

and C (and hence independent of K ). When the predator–prey system possesses a
stable limit cycle on the other hand, the ss trait value has to be determined numerically.
This will be explained in the next section.

3.4 AD-results

Figure 12a gives the one-parameter diagram with the prey’s carrying capacity K as
free parameter for the densities n, pS, pF , pD where again C = 2. Here we started on
the transcritical bifurcation TC2 at ρm = ρ∗ − δ, so a point very close to the ss point,
and continued this transcritical bifurcation TC2 with ρ and K as free parameters. For
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Fig. 11 One-parameter diagram for the resident population prD and variant population pmD , where ρr varies
while ρm = ρr − δ for system Eq. (19). See Fig. 9 for the pip-plot with the line ρm = ρr − δ. Now besides
the equilibrium results the limit cycle results are shown. Solid (almost straight) curves between TC1 and
TC2 are maximums and minimums of the stable limit cycle where both resident and variant populations
coexist. Between TC1 and H there is a limit cycle and above H a stable equilibrium, where prD = 0, that
is for the variant population only. Below TC2, we have pmD = 0 where the resident population exist stably.
Dashed curves show either unstable equilibrium or maximums and minimums of unstable limit cycles.
Parameter values as given in Table 1 where C = 2.0 and K = 20

decreasing K at the transcritical bifurcation TC the predator population goes extinct
whereby all three sub-populations disappear simultaneously. For values above the
Hopf bifurcation H where the equilibrium is unstable we continued the transcritical
bifurcation of the limit cycle as explained in the previous section.

Similar results are shown in Fig. 12b now for C = 1 in the monomorphic region
where G > C . Consequently, for all K the ss is the right-top corner of the pip-plot.
In these pip-plots the diagonal divides the plot into two halves, below the diagonal
there is the ‘−’-region where always the resident wins and above the diagonal the
‘+’-region where the variant population always wins. This show directly that the ss
with ρ∗ = 1 is a css and also the end-point (for comparison see Fig. 6 where C = 2
and K = 20). Notice that this also holds for the K -region where the equilibrium is
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Fig. 12 One-parameter diagrams for the densities as function of the carrying capacity K predicted by the
AD approach, system Eq. (19). Below TC , all predator sub-populations are zero the population is extinct.
Between TC and Hopf bifurcation point H a stable equilibrium and above H there is a limit cycle
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Fig. 13 Two-parameter bifurcation diagramC versus K for the AD approach system Eq. (19) where ε = 1
with G given in Eq. (14e). Parameter values as given in Table 1 and see Fig. 2 for an explanation of the
symbols

unstable and a limit cycle exists (see Fig. 12b) with small amplitude just above the
Hopf bifurcation.

Now we are interested in the transition from the stable equilibrium to the stable
limit cycle between K = 2 and K = 20 when C = 2. Figure 11 indicates that we are
looking for the K value where all four bifurcation points coincide.

A method to continue the Hopf bifurcation in the parameter bifurcation diagrams
where C and K are the free parameters and using auto (Doedel and Oldeman 2009)
is as follows. In this special case we know that singular strategy trait value, given a
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C value and independent of K , is given by Eq. (25). This value can be substituted
directly in system Eq. (14) where ρr = ρm = ρ∗ and using Eq. (8) it is possible to
continue the Hopf bifurcation in the two parameter space (C, K ). In order to avoid
numerical problems we take an approximated value: ρr = ρ∗ + δ and ρm = ρ∗ − δ,
so coexistence points for the resident and variant populations but close to the ss point.
The resulting Hopf bifurcation curves for the mono- and dimorphic cases are shown
in the two-parameter bifurcation diagram Fig. 13.

In the next Sect. 4 we will compare the results given in Figs. 12 and 13 with those
for the RD approach given in Figs. 3 and 4.

4 Discussion and conclusions

In a previous paper by Auger et al. (2006) we studied the dynamical behaviour of a
predator–prey system where the predators feed on the prey via direct consumption
and also via fighting. The outcome of the fighting was modelled as a continuous-trait
hawk–dove game where the defending predator individuals play either the hawk or
the dove tactic with gain and costs as defined in the classical hawk–dove game pay-off
matrix Eq. (1). The predator individuals go through a sequence of behavioral stages:
searching and feeding stages and when a feeding individual encounters a searching
individual they enter the third defenders stage. In this stage they can either keep the
prey, share the prey or lose it, while playing hawk or dove tactics.

The individual behavioral processes run often at a much faster time scale than those
of the population size changes. Therefore in Auger et al. (2006) we applied a time
scale separation technique to reduce the dimension from six for the predator plus
one for the size of the prey population, to two, namely for the sizes of the prey and
predator populations. Crucial was the fact that the hawk–dove game occurs at the fast
time scale, often called the quasi-steady state assumption. As a consequence the gain
and also the trait of the hawk–dove game are density-independent, see Eq. (27c) in
the Appendix. This is corrected in this paper by using Eq. (14e) or when applicable
Eq. (15) to describe the gain. Then, in the full model the gain and consequently also
the trait of the predator population, are density-dependent, and this is essential when
the predator–prey system oscillates periodically.

Hence, in the RD-approach through changing tactics of a variant individual with a
gain above average population gain, the strategy of the predator population is continu-
ously and instantaneously adapted to the momentary ess trait value given as the actual
equilibrium of the replicator equation Eq. (11). The governing equations are all ode’s.
To describe the dynamics of the trait either the replicator equation, which is itself an
ode, or directly the quasi-static ess trait value, yielding an algebraic equation, is used.
Hence, the same type of bifurcation analysis can be done as by Auger et al. (2006).

In this paperwemodelled, besides theRD-approach also theAD-approachwhereby
competition shapes the dynamics via possible invasion of the rare variant population
into the resident population. In theAD-approach applied to eco-evolutionary problems,
the dynamics of the trait and the full evolutionary trajectory of the population are
generally described by the canonical equation, see (Dieckmann and Law 1996; Geritz
et al. 1998; Dercole et al. 2003; Dercole and Rinaldi 2008). The parameters in these
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canonical equations describing the trait dynamics, are directly related to inheritance of
traits via mutations. A zero invasion fitness gradient determines the singular strategy
state. Here we use a time-scale separation argument and no alternative expressions
for parameters of such a canonical equation related to learning are needed. Then
in terms of bifurcation theory the traits of the resident and variant populations are
bifurcation parameters and the ss point is fixed by the intersection of two transcritical
bifurcations. This process is graphically illustrated in pip-plots. Here also a Hopf
bifurcation is involved, namely when the predator–prey system starts to cycle under
nutrient enrichment.

In the literature the AD-approach has often been applied to simple ’toy’ models
to get theoretical insight. In Dieckmann and Metz (2006) this was the case where
they studied the hawk–dove game embedded in a simple population dynamical one-
dimensional discrete-time model with non-overlapping generation. In that paper vari-
ations of this model were used to find conditions for having degeneracy, namely
that the ss is neutral (nss): a general result of game theory, widely known as the
Bishop–Cannings theorem (Bishop and Cannings 1978; Geritz et al. 1998; Dieck-
mann and Metz 2006). They showed that reward fluctuations between generations
removes already the degeneracy. This is similar to our finding that when the dimor-
phic predator–prey system is oscillating the ss is continuously stable (css). The use
of (numerical) bifurcation analysis techniques makes it possible to analyse more com-
plex and biologically more realistic models such as the continuous-time predator–prey
system.

In the RD-approach two-parameter (C, K ) bifurcation diagrams for the reduced
system Eq. (28) described in the Appendix and the four dimensional system Eq. (14)
are given in Fig. 2 (ε = 0) and Figs. 3 (ε = 1) whereby in both models c = ∞. In
these models the regimes where the monomorphic and the dimorphic systems occur
are separated by the vertical line at C = γ + εμ. This explains the shift in this vertical
line from C = 1 (where ε = 0), for the reduced model to C = 1.5 for the full model
(where ε = 1).

Since the transcritical bifurcation TC is an equilibrium bifurcation and because
in equilibrium the RD- and AD-approach give the same results, the TC-curves in
the two-parameter (C, K ) bifurcation diagrams are the same for both game dynamics
formulations.

From Figs. 4 versus 12 and Figs. 3 versus 13 we conclude that for the two RD-
and AD-formulations the same solutions are predicted in stable equilibrium regions
of the two-parameter bifurcation diagram. There are differences in the monomorphic
case, G > C , when the amplitude of the limit cycles are large so that switching
between monomorphic and dimorphic populations occurs in the RD-approach only.
Furthermore both approaches give quantitatively different results in the dimorphic
case, G > C , above the Hopf bifurcation where a stable limit cycle for the predator–
prey system exists.

In both approaches, the monomorphic and the dimorphic cases are separated by
the vertical curve at the same C = 1.5. On the left-hand side of the vertical curve
where G > C the population is monomorphic where although the gain G is density-
dependent, the trait ρ∗ = 1 is density-independent. On the right-hand side of the
vertical curve where G < C there is only equality when the predator–prey system
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in both models are in stable equilibrium with ρ∗ = G/C . We conclude that the
bifurcation pattern is qualitatively the same for all two-parameter (C, K ) bifurcation
diagrams predicted by the different models. Two of these models are for ε = 0, Fig. 2,
and ε = 1, Fig. 3, and this indicates that the results are robust for the parameter values
given in Table 1 for intermediate values where ε ∈ [0, 1]. In the C-parameter range
round the threshold where costs equal gain and the population changes from mono-
to dimorphic, all models predict that there is equilibrium for arbitrary prey’s carrying
capacities and that the “paradox of enrichment” phenomenon does not occur.

While the predicted trait value is an ess as equilibrium of the replicator equation
in the RD-approach, the ss in the AD-approach is a nss. New variant populations can
coexist with the resident populations forming a stable coalition between two popu-
lations with a different trait value. This shows that the introduction of a behavioural
process for the predator population makes it possible to have two different predator
populations, namely with different trait values, living on one prey population. This is
in contradiction with the “competitive exclusion” principle by Hardin (1960). Obvi-
ously the introduction of a behavioural process (here with two states hawks and doves)
facilitates the stable coexistence of two populations (called supersaturation).

We presume that the RD-approach is consistent with individual learning (IL). Indi-
viduals in a replicator system have localized knowledge concerning the system as a
whole (Gintis 2000). On the other hand in the AD-approach the invasion fitness is
determined by competition between two populations where in each population the
individuals have the same trait value. Then effectively, the population does adopt a
best reply to the overall trait value which is consistent with social learning (SL).

When variant populations differ randomly from the resident with myopic learning
by trail and error, then for stable equilibria of AD-approach system the trait values
remain in general close to the predicted nss value. Notice that this degeneracy, also
discussed by Dieckmann andMetz (2006), exists in equilibrium even though feedback
from the environment via the ecological processes such a searching for prey and
feeding, are taken into account. However, when the systems are periodically oscillating
in the AD approach the ss is not degenerated, it is a css. Hence for this predator–prey
systemoscillatory dynamics does not facilitate coexistence of twopredator populations
living on a single prey population.

These results illustrate how intra-specific trait dynamics matters in predator–prey
interaction and therefore also in ecosystem dynamics in general.
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Appendix: Time scale separation reduction

We recall shortly some of the results already obtained by Auger et al. (2006). The full
model is described by the governing seven dimensional set of equations Eqs. (14) with
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ε = 1 and τ = t . In Auger et al. (2006) this model was reduced by assuming c = ∞
and ε = 0. Because the game dynamics described by the RD-approach is assumed to
be fast, it is separated from the ecological searching and feeding dynamics. Therefore
we can use replicator game equilibria of Eq. (11) given in Eq. (12) in Eqs. (7, 8).
Furthermore with ε = 0, also the ecological searching and feeding processes are
assumed to be fast with respect to the other ecological processes such as prey growth
and predator mortality. This is similar to the assumptions underlying the derivation of
the Holling-disk equation.

At this RD equilibrium the average gain for the whole population Eq. (8) and using
Eq. (11) reads:

u∗TAu∗ =
{ G

2 − ρ∗2 C
2 = G

2 (1 − G
C ) ifG < C

G
2 − C

2 = G
2 (1 − C

G ) ifG > C,
(27a)

where Eq. (12) becomes

ρ∗ = pDH

pD
= G

C
, 1 − ρ∗ = pDD

pD
= C − G

C
. (27b)

This means that the strategy and trait value is continuously adapted instantaneously
also when the system is periodically oscillating.

Because ε = 0 and c = ∞, in predator–prey equilibrium Eq. (14d) yields

G∗ = γ, (27c)

where γ is a parameter (see Table 1).
In Auger et al. (2006) using again ε = 0, explicit expressions for the quasi-

equilibrium values for the total searchers p∗
S , feeders p

∗
F and defenders p∗

D are derived.
The reduced model reads

dn

dt
= rn

(
1 − n

K

)
− anp∗

S, (28a)

dp

dt
=

{
α
(
βp∗

F + G
2 (1 − G

C )p∗
D

) − μp ifG < C

α
(
βp∗

F + G
2 (1 − C

G )p∗
D

) − μp ifG > C,
(28b)

where the values of p∗
S , p

∗
F , p

∗
D are given by

p∗
S = γ (bp − β − an) + √

γ 2(bp − β − an)2 + 8abγβnp + 4γ 2βbp

2(2abn + bγ )
, (28c)

p∗
F = an

β + bp∗
S
p∗
S, (28d)

p∗
D = p − p∗

S − p∗
F . (28e)

The switch between the models when G = C is smooth with respect to the state
variables n(t) and p(t).
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Thereafter the six quasi-steady state solutions for p∗
SD, p∗

FD, p∗
DD for the dove

predators and p∗
SH , p∗

FH , p∗
DH for the hawk predators are expressed in the slow state

variables n(t) and p(t). The quasi-steady state values of these variables can be calcu-
lated with the next formulas:

p∗
FD = anγ

(bp∗
S + β)(bp∗

F + an) − anβ
p∗
DD, (28f)

p∗
SD = βp∗

FD + γ p∗
DD

bp∗
F + an

, (28g)

p∗
DD = (1 − ρ∗)p∗

D. (28h)

p∗
FH = anγ

(bp∗
S + β)(bp∗

F + an) − anβ
p∗
DH , (28i)

p∗
SH = βp∗

FH + γ p∗
DH

bp∗
F + an

, (28j)

p∗
DH = ρ∗ p∗

D. (28k)

The proportions of hawk and dove individuals divided in each population stages
(searchers, feeders and defenders) are equal. For the defenders we have Eq. (27b)
giving ρ∗/(1 − ρ∗) = p∗

DH/p∗
DD . Then the expression for the other sub-populations

we have ρ∗/(1− ρ∗) = p∗
SH/p∗

SD = p∗
FH/p∗

FD . This also holds for the total density
of hawks (p∗

H = p∗
SH + p∗

FH + p∗
DH ) versus doves (p

∗
D = p∗

SD + p∗
FD + p∗

DD)
where the ratio value in equilibrium equals ρ∗/(1 − ρ∗) = p∗

H/p∗
D.

The two-parameter bifurcation diagramC versus K for this reduced systemEq. (28)
with G given in Eq. (27c) is shown in Fig. 2.
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