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abstract: Dominance of free-floating plants poses a threat to bio-
diversity in many freshwater ecosystems. Here we propose a theoret-

fauna and fish to survive (Portielje and Roijackers 1995).
It is therefore crucial to know what drives the occurrence
ical framework to understand this dominance, by modeling the com-
petition for light and nutrients in a layered community of floating
and submerged plants. The model shows that at high supply of light
and nutrients, floating plants always dominate due to their primacy
for light, even when submerged plants have lower minimal resource
requirements. The model also shows that floating-plant dominance
cannot be an alternative stable state in light-limited environments
but only in nutrient-limited environments, depending on the plants’
resource consumption traits. Compared to unlayered communities,
the asymmetry in competition for light—coincident with symmetry
in competition for nutrients—leads to fundamentally different re-
sults: competition outcomes can no longer be predicted from species
traits such as minimal resource requirements (R* rule) and resource
consumption. Also, the same two species can, depending on the en-
vironment, coexist or be alternative stable states. When applied to
two common plant species in temperate regions, both the model and
field data suggest that floating-plant dominance is unlikely to be an
alternative stable state.

Keywords: resource competition, macrophytes, coexistence, compet-
itive exclusion, alternative stable states, theoretical model.

Introduction

Dense mats of free-floating plants are a threat to the bio-
diversity and ecological functioning of aquatic ecosystems,
ranging from tropical lakes (Brendonck et al. 2003) to tem-
perate ditches and ponds (Janse and van Puijenbroek
1998). Underneath these mats, the water often becomes
too dark for submerged plants to photosynthesize (Morris
et al. 2004) and too low in dissolved oxygen for macro-
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of these dense mats of floating plants and whether they are
a self-enhancing (alternative) stable state, as suggested by
Scheffer et al. (2003).
The in-water nutrient availability is of vital importance

for the development of free-floating plants and is affected
by submerged plants (Madsen andCedergreen 2002). There-
fore, the occurrence of free-floating plants can be under-
stood by studying their competition with submerged plants
for light and nutrients. Although there have been empiri-
cal studies on the competition between floating and sub-
merged plants using laboratory experiments (Janes et al.
1996; Szabo et al. 2010), mesocosm experiments (Feucht-
mayr et al. 2009; Netten et al. 2010; Lu et al. 2013; Smith
2014), and field experiments (Portielje and Roijackers
1995; Forchhammer 1999), the theoretical understanding
of the competition between floating and submerged plants
for light and nutrients is still limited.
Most mechanistic theory on competition for light and

nutrients is developed for phytoplankton. For example,
I*out-R* theory describes the competition of phytoplankton
species for light and nutrients in a mixed water column
(Huisman and Weissing 1995). It is an extension of R* the-
ory, which describes competition of species for nutrients
(Tilman 1982). An elegant feature of I*out-R* theory (as well
as R* theory) is that one can predict the competition out-
come from species traits, such as minimal resource require-
ments (R* rule) and resource consumption. Yet this frame-
work considers the competition between species that have
the same position in the water column, while floating and
submerged plants have different positions. The (vertical) po-
sition of a species matters when considering light, because
light forms a gradient with depth due to light attenuation
by biomass and background extinction (Kirk 1994). In a ver-
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tically layered community, the competition for light, there-
fore, becomes asymmetric: the upper species (the floating

neous nutrient environment—is sufficient to indicate that
the competition outcome cannot be predicted anymore

Competition Model
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plant) has the primacy for light and shades the lower spe-
cies (the submerged plant) and thus has a competitive ad-
vantage. The competition for nutrients, on the other hand,
is not asymmetric, as both floating and submerged plants
compete for nutrients in the same medium (water column).

Mechanistic resource competition theory has been ex-
tended to include asymmetrical competition. Yet none of
the available theoretical frameworks are suited to describe
the competition between floating and submerged plants.
Weissing and Huisman (1994), Huisman et al. (1999), and
Perry et al. (2003) considered asymmetrical competition
for light but did not take competition for nutrients into ac-
count. In cases where nutrients were explicitly modeled,
either the mechanism underlying the layeredness differed
or the competition was not only asymmetric for light but
also for nutrients (double asymmetry).

For example, in pelagic phytoplankton communities, the
layeredness emerges from limited vertical mixing of the
water column (Yoshiyama et al. 2009; Ryabov and Blasius
2011; Ryabov 2012) and from extra movement of phyto-
plankton related to sinking or buoyancy regulation (Huis-
man et al. 2006; Ryabov et al. 2010), with vertical nutrient
gradients as a result. For floating and submerged plants,
however, the layeredness does not emerge—as they do not
wander through the water column—but is directly imposed
by their growth form. The model of Jäger and Diehl (2014)
gives an example of double asymmetry: not only do the
upper species (pelagic algae) have a primacy for light (sim-
ilar to floating plants) but the lower species (benthic algae)
have a primacy for nutrients, supplied from below, whereas
floating and submerged plants directly compete for the
same nutrients. Interestingly, these more complex exam-
ples of asymmetrical competition show that the competi-
tion outcome cannot simply be predicted anymore from
species traits alone.

The only model that does describe the competition be-
tween floating and submerged plants is the model of Schef-
fer et al. (2003). However, this model is not fully mecha-
nistic—for example, it does not have a closed nutrient and
light balance—and is not embedded in classical resource
competition theory. This motivated us to develop a model
that does comply with these aspects.

Here we present a mechanistic model that describes the
competition for light and nutrients in a layered commu-
nity of floating and submerged plants. We hypothesize that
the floating plant, due to its primacy for light, can outcom-
pete the submerged plant, even when the submerged plant
has lower resource requirements than the floating plant.
This implies that the most parsimonious form of asymme-
try in competition—asymmetry in competition for light
but symmetry in competition for nutrients in a homoge-
This content downloaded from 23.235.32
All use subject to JSTOR
from species traits alone and, hence, that environmental
conditions codetermine the competition outcome.
To test this and to better understand when floating

plants dominate, we analyzed our model and its competi-
tion outcome for a wide range of species traits and envi-
ronmental conditions, focusing on the requirements for
single-species dominance, coexistence, or alternative sta-
ble states. Furthermore, we analyzed the competition out-
come for floating and submerged plant species that are
common in temperate regions and discuss the likelihood
of floating-plant dominance as an alternative stable state.

Methods
Our model describes competition for light and nutrients
in a layered community of floating plants (F) and sub-
merged plants (S) in a vertical water column (fig. 1; ta-
ble 1). The model extends I*out-R* theory (Huisman and
Weissing 1995), which describes the symmetric competi-
tion for nutrients and light among species with the same
position, for species with a different fixed vertical position,
resulting in asymmetrical competition for light. It consists
of three differential equations, describing the dynamics of
floating and submerged plant biomass (in gDW[dryweight]
m22) and nutrients (in g N [nitrogen] m23). The plant bio-
mass dynamics depend on the balance between loss rate m
and growth rate p:

dF
dt

p (pF 2mF)F, (1)

dS
dt

p (pS 2mS)S. (2)

The growth rate p(I, R) is colimited by nutrient concen-
tration R and light intensity I:

pi p fR,ifI,ipmax,i, (3)

where i stands for S or F, pmax is the maximum growth rate,
fR(R) is the nutrient limitation factor, and fI(I) is the light
limitation factor. Nutrient limitation is characterized by
a Michaelis-Menten function with half-saturation constant
M:

fR,i p
R

R1Mi

. (4)

Light limitation is also characterized by a Michaelis-
Menten function, with half-saturation constant H. Since
light forms a gradient with plant biomass and therefore
varies with depth (Kirk 1994), the average light limitation
.0 on Mon, 7 Dec 2015 05:17:06 AM
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Consumption of the Plants

To test how asymmetry in light competition determines
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depth:

fI,F p
1
kFF
EIin

I0

1
HF 1 I

dIp
1
kFF

ln

�
HF 1 Iin
HF 1 I0

�
, (5)

fI,S p
1

kSS1KbgzB
EI0

Iout

1
HS 1 I

dIp
1

kSS1KbgzB
ln

�
HS 1 I0
HS 1 Iout

�
,

(6)

where in solving the integral, the plant biomass is assumed
to be uniformly distributed with depth. For details on the
derivation of the light limitation factor, see Huisman and
Weissing (1994). Here Iin is the incoming light intensity,
I0 is the light intensity below the floating plants and above
the submerged plants, and Iout is the light intensity below
the submerged plants (fig. 1). I0 and Iout depend on the light
attenuation by plant biomass, according to Lambert-Beer’s
law:

I0 p Iine2kFF , (7)

Iout p I0e2(kSS1KbgzB), (8)

where k is the light attenuation coefficient of the plant.
Here Iout also depends on the background light attenuation
Kbg of the water and the water column depth zB.

The nutrient concentration R in the water column is as-
sumed to be homogeneous over depth, which is a reason-
able assumption for shallow waters. Nutrient dynamics de-
pend on the nutrient consumption by the plants and on
the input and output of nutrients related to water flow q:

dR
dt

p
q
zB
(Rin 2R)2

1
zB
(cFpFF1 cSpSS)p

rin
zB

2DR

2
1
zB
(cFpFF1 cSpS),

(9)
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(Rin p rin=q), D is the dilution rate of the water column
(Dp q=zB), and the nutrient consumption by water plants
equals the biomass growth multiplied by c, the nutrient
content per unit of biomass. Division by zB gives the nutri-
ent consumption per unit volume.

Minimal Resource Requirements and Resource
In general resource competition theory, such as R* theory
(Tilman 1980, 1982) and I*out-R* theory (Huisman andWeis-
sing 1995), the species’minimal resource requirements and
resource consumption are important traits to predict the
competition outcome. The minimal resource requirements
are the lowest level of light and nutrients at which the plant
can persist. The resource consumption is related to the
consumption vector, which represents the proportion of
resources consumed when the species is at equilibrium (Til-
man 1980). We derived these traits from the model equa-
tions (see app. A; apps. A and B are available online) to an-
alyze their importance when the competition is asymmetric
for light.

Model Analysis
the competition outcome between submerged and floating
plant species, we analyzed our model for a wide range of
species traits and environmental conditions. We assumed
nitrogen (N) to be the limiting nutrient. However, we could
also have chosen phosphorus (P), because P limitation seems
to be equally widespread for primary producers in fresh-
water ecosystems (Elser et al. 2007). We have checked by
model simulations (not shown here) that the choice for N
is obtained by integrating over the depth covered by the
plant, here expressed in terms of I, the light intensity at

where rin is the nutrient loading, which can be converted
to a nutrient concentration Rin of the inflowing water

Figure 1: Competition model of floating plant F and submerged plant S in a vertical water column with nutrient fluxes (left) and light in-
tensity (right).
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outcome qualitatively. (fig. 2D). As it is often assumed that submerged plants

Table 1: Model symbols and their definition

Default value Common plants
a

22

J m s
I0(F)

J m s . . . . . .
Plant species parameters

pi(I, R)

Light limitation factor of growth . . . . . . . . .

Competition in Layered Communities 75
We performed the model analysis in several steps. We
started our analysis by evaluating the competition out-
come when both plants have equal traits (fig. 2A) by using
the same default parameter values for each plant (table 1).
These values were in the middle of ranges reported in the
literature for common floating and submerged plants (Janse
1998, 2005; Scheffer et al. 2003). We plotted the competi-
tion outcome in the rin–Iin plane, that is, for various combi-
nations of light supply Iin and nutrient loading rin, mimick-
ing a wide range of environmental conditions.

Second, we analyzed the effect of different minimal re-
source requirements of the plants on the competition out-
come in the rin–Iin plane. This was done by varying the
half-saturation constants for nutrient limitation (M) and
light limitation (H; see eqq. [A1] and [A2] in app. A), such
that the submerged plant has lower minimal requirements
This content downloaded from 23.235.32
All use subject to JSTOR
have lower minimal resource requirements than floating
plants, we continued our study focusing on this configura-
tion. We aimed at obtaining a more thorough understand-
ing of the competition outcome of this configuration by
analyzing the equilibrium biomass of both plants along a
gradient of light supply and nutrient loading (fig. 3). We
zoomed in on these gradients that captured the most com-
plex and interesting model outcomes.
Next, we were interested in the effect of the plant’s re-

source consumption traits on the competition outcome in
the rin–Iin plane (fig. 4). Therefore, we varied the plant’s ra-
tio of light attenuation k to nutrient content c, as this ratio
controls the resource consumption (see eqq. [A6] and [A7]
in app. A). Also, we analyzed how the competition outcome
depends on environmental conditions other than light and
nutrient supply, such as water column depth zB, dilution rate
Type, symbol Description Unit (for F and S) (Lemna sp., Elodea sp.)

State variables:

F
S

Floating plant biomass
Submerged plant biomass
.0 o
 Ter
g DW m
g DW m22
n Mon, 7 Dec 2015 
ms and Conditions
. . .

. . .
05:17:06 AM
. . .

. . .

R
 Nutrient concentration in water
23
column
 g N m
 . . .
 . . .

Light functions:
22 21
I
 Light intensity at depth
Light intensity at top of water
22 21
. . .
 . . .
column
 J m s
 . . .
 . . .

Iout(S, F)
 Light intensity at bottom of water
22 21
column
and functions:

Growth rate of plant i
 day21
 . . .
 . . .
fR,i(R)
fI,i(I)
Nutrient limitation factor of growth
 . . .
 . . .
 . . .
pmax,i
 Maximum growth rate
 day21

21
.3
 .4, .32

mi
 Loss rate
 day

2 21
.05
 .05, .029

ki
 Light attenuation coefficient
 m g DW

22 21
.03
 .03, .03

Hi
 Half-saturation constant for light
 J m s

23
30
 32, 32

Mi (nitrogen)
 Half-saturation constant for nutrient
 g N m

23
.5
 2.5, .5

Mi (phosphorus)
 Half-saturation constant for nutrient
 g P m

21
. . .
 .25, .05

ci (nitrogen)
 Nutrient to dry weight ratio
 g N g DW

21
.03
 .07, .0225

ci (phosphorus)
 Nutrient to dry weight ratio
 g P g DW
 . . .
 .015, .00215
Environmental parameters:

22 21
rin
 Nutrient loading
 g N m day

22 21
0–.5
 . . .

Iin
 Incoming light intensity
 J m s
 0–1,000
 . . .

zB
 Water column depth
 m

21
.1–1
 . . .

D
 Dilution rate of water column
 day

21
.01–.5
 . . .

Kbg
 Background light attenuation
 m
 0–5
 . . .
Note: DW p dry weight.

a From Janse 1998.
or P as a limiting nutrient does not affect the competition for light (fig. 2B), nutrients (fig. 2C), or light and nutrients
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chosen within realistic ranges (Krause-Jensen and Sand-
Jensen 1998), such that the maximum plant biomasses are

We solved for the competition outcome numerically, since

The Importance of Species Traits

1000
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We concluded our analyses by evaluating the competi-
tion outcome for two floating and submerged plant species
that are common in temperate regions, Lemna sp. (duck-
weed) and Elodea sp. (waterweed), respectively (fig. 6). We
did this for both N and P as a limiting nutrient. We re-
trieved the parameter values (table 1) from the established
ecosystemmodel PCDitch (Janse 1998), which simulates the
competition between water plants with different growth
forms. PCDitch provides a coherent set of vegetation pa-
rameters, derived from the literature and calibrated on ex-
perimental Dutch ditches. For Lemna sp., the light param-
eters H and k are not defined in PCDitch, because its light
limitation is incorporated differently in PCDitch compared
to our model. We assumed the half-saturation constant for
light limitation H to be the same for Lemna sp. and Elodea
sp. The light attenuation coefficient k for both plants was
This content downloaded from 23.235.32
All use subject to JSTOR
realistic. Furthermore, for the nutrient content c of the
plants, we used the average of the minimum and maximum
content provided by PCDitch.

Analysis Methods
we did not find any simple expressions for the plants’ equi-
librium densities. We used the software packages AUTO
(Doedel and Oldeman 2009) and R (R Core Team 2013)
for numerical analyses and to determine the stability of
the equilibria and the position of bifurcations in the rin–
Iin plane.
Supplementary to bifurcation analysis, we performed

numerical invasion analysis to determine the competition
outcome by calculating whether a species (the invader) can
invade an equilibrium density of another species (the res-
ident; Chesson 2000). In a two-species community such
as ours, the species stably coexist when each species can
invade (1) an equilibrium density of the other (11),
and the species are alternative stable states when neither
can invade (2) an equilibrium density of the other (2 2),
while (1 2) or (2 1) leads to competitive exclusion of
the species that cannot invade (e.g., Gerla et al. 2011). In
the case of alternative stable states, the species that estab-
lishes first outcompetes the other.

Results
When both plants have equal traits, the floating plant out-
competes the submerged plant for all combinations of
light supply and nutrient loading (fig. 2A), provided that
the resource supply is high enough for the plants to per-
sist. This illustrates the asymmetry in light competition
in layered communities and the resulting competitive ad-
vantage of the floating plant: it has the primacy for light,
shades the submerged plant, and does not compete for
light with the submerged plant.
The submerged plant can only outcompete the floating

plant when it has lower minimal resource requirements for
light (fig. 2B), nutrients (fig. 2C), or light and nutrients
(fig. 2D), provided that the supply of the resource for which
it has the lowest requirements is low enough. At a higher
resource supply level, a submerged plant with lower re-
source requirements coexists or shows alternative states
with—or is even outcompeted by—the floating plant. At
a high enough supply of light and nutrients, the floating
plant always outcompetes the submerged plant. For fur-
ther analysis, we used the configuration where the sub-
D, and water background light attenuation Kbg (fig. 5), by
varying them within the ranges reported in table 1.

rin

I in

F F

F F

F/SF/S

F&S

F&S

S

S

S
1

2

A B

C D

10

100

10

100

1000

0 0.25 0.5 0 0.25 0.5

Figure 2: Outcome of the competition of floating plant F and sub-
merged plant S for combinations of light supply Iin (W m22) and nu-
trient loading rin (g N m22 day21). F p regions where the floating
plant persists, S p regions where the submerged plant persists,
F&S p the plants coexist, F/S p the plants are alternative stable
states. Note that at a low resource supply, both plants cannot persist.
In A, the plants have equal traits, whereas in B–D, they have differ-
ent resource requirements. The submerged plant has the lowest nu-
trient requirements in C and D and has the lowest light requirements
in B and D. D, The dashed lines 1 and 2 are transects used for the
bifurcation analysis in figure 3. Environmental parameters: Kbg p 0,
zB p 0.5, Dp 0.1. The plant parameters equal the default values given
in table 1, except forM and H, which determine the minimal resource
requirements: A, MF pMS p 0.5, HF pHS p 30; B, MF p 0.3, MS p
0.7, HF p 40, HS p 20; C, MF p 0.7, MS p 0.3, HF p 20, HS p 40; D,
MF p 0.7, MS p 0.3, HF p 40, HS p 20.
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ration is assumed to be the most common and gives the
richest competition outcome.

To better understand the competition outcome, we ana-
lyzed the equilibrium biomass of both plants along a gra-
dient of light supply (transect 1 in fig. 2D; results plotted
in fig. 3A). The submerged plant can persist at a lower
light supply (bifurcation 1), since it has the lowest light
requirements. When the light supply is increased, there
is enough light for the floating plant to persist (bifurcation
2), and the plants coexist until the floating plant reaches
a critical biomass and intercepts too much light for the
submerged plant to persist (bifurcation 3). With a further
increasing light supply, nutrient limitation takes precedence
This content downloaded from 23.235.32
All use subject to JSTOR
librium density of the other: the submerged plant reduces
the nutrient concentration to levels too low for the floating
plant to invade, and the floating plant intercepts too much
light for the submerged plant to invade. At an even higher
light supply level (above that of bifurcation 5), only the sub-
merged plant persists because the floating plant no longer
intercepts enough light to prevent the submerged plant from
invading.
In a similar manner, we analyzed the competition out-

come by regarding the equilibrium biomass along a gradi-
ent of nutrient loading (transect 2 in fig. 2D; results plot-
ted in fig. 3B). The submerged plant persists at a lower
nutrient loading (bifurcation 1), as it has the lowest nutri-
merged plant has the lowest requirements for both light
and nutrients (fig. 2D) as a starting point, as this configu-

over light limitation. From bifurcation 4 onward, they are
alternative states, since both plants cannot invade the equi-
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Figure 3: Effect of light supply Iin (W m22; A) and nutrient loading rin (g N m22 day21; B) on equilibrium biomass (g DW [dry weight] m22)
of floating plant F and submerged plant S (upper panels) and on the growth limitation of the plant when invading an equilibrium density of
the other (lower panels). Catastrophic shifts are indicated with arrows, and the dashed lines (upper panels) give the unstable coexistence
equilibrium. The circles denote transcritical bifurcations. Bifurcations 2–5 are the invasion boundaries where the total growth limitation
fT of the invader (fT p fRfI) equals the growth limitation level at which the invader can persist (dashed line). Note that the growth limitation
is maximum at fT p 0 and is absent at fT p 1. The parameter values are the same as in figure 2D, with rin p 0.2 in A (see transect 1 in fig. 2D)
and Iin p 200 in B (see transect 2 in fig. 2D).
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when alone, it is outcompeted by the submerged plant.
From bifurcation 2 onward, they are alternative states since
both plants cannot invade the equilibrium density of the
other: the floating plant intercepts too much light for the
submerged plant to invade, and the submerged plant keeps
the nutrient concentration too low for the floating plant to
invade. At a higher nutrient supply (from bifurcation 3 on-
ward), only the floating plant persists, as the submerged
plant cannot keep the nutrient concentration low enough
to prevent the floating plant from invading.

When changing the resource consumption traits of both
plants—by changing the ratio of light attenuation coeffi-
cient k over nutrient content c—the competition outcome
is affected mainly in nutrient-limited environments (fig. 4).
These are environments where nutrients are more limiting
than light due to a low supply of nutrients relative to light.
In these environments, the plants coexist or are alterna-
This content downloaded from 23.235.32
All use subject to JSTOR
relative to kS /cS increases. In light-limited environments,
on the other hand, the competition outcome is hardly af-
fected: the plants outcompete each other or coexist and do
not show alternative states, irrespective of the consump-
tion traits. Note that the competition outcome does not
depend on the absolute values of k and c, as long as their
ratio k/c is constant, because then the consumption vector
does not change (see eqq. [A6] and [A7] in app. A). How-
ever, the absolute value of k does affect the equilibrium
biomass: a higher value for k leads to a lower biomass due
to more self-shading.

The Importance of Background Attenuation,
Dilution Rate, and Water Depth
Varying the depth, dilution rate, and background attenu-
ation of the water illustrates how the environment con-
ent requirements. With increasing nutrient loading (up to
bifurcation 2), even if the floating plant is able to persist

tive states depending on the consumption traits, where the
chance of having alternative states increases when kF/cF

k  / c  = 0.67
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trols the extent to which species can benefit from their spe-
cific position and traits. For example, a higher background

An increase of the water depth simultaneously lowers
the average light availability in the water column, which

When parameterizing the model for floating and submerged

S SS

F/SF/SF/S
1000
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light attenuation of the water reduces the competitive suc-
cess of the submerged plant (fig. 5, upper panels), as the
resulting lower light availability in the water column af-
fects the submerged plant only. High background attenu-
ation can even lead to the disappearance of submerged
plants in light-limited environments, as the light availabil-
ity in the water column becomes too low for the plants to
persist.

An increased dilution rate enhances the competitive suc-
cess of the plant with the lowest nutrient requirements
(fig. 5, middle panels), which in our case is the submerged
plant. This is because a higher dilution rate implies more
water flow (see eq. [9]) and, thus, a lower nutrient concen-
tration in the inflow for a given nutrient loading rin. This
lower concentration also implies that both plants need
more light to persist.
This content downloaded from 23.235.32
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is detrimental to the submerged plant, and lowers the nu-
trient availability, as the nutrient loading has to be divided
over a larger depth, which, in our case, is most detrimental
to the floating plant. With the current model settings, the
floating plant suffers less from deeper water (fig. 5, lower
panels), as the adverse effect on the submerged plant takes
precedence over the adverse effect on floating plants.

Competition Outcome for Common Macrophytes
plant species common in temperate regions (Lemna sp.
duckweed and Elodea sp. waterweed) for N or P as a limit-
ing nutrient, the model predicts that waterweed outcom-
petes duckweed at a low resource supply, duckweed and
waterweed coexist at an intermediate resource supply, and
rin

I in

            

     

 

SSS

SSS

F&S

F&SF&S

F&S

F&S
F&SF&S

F&S

F/S

F/SF/SF/S

F/S F/S

F

F

FFF

FF

FF

10

100

10

100

1000

10

100

1000

0 0.25 0.5 0 0.25 0.5 0 0.25 0.5

K
D

z
bg

B

Kbg=0 Kbg=2.5 Kbg=5

D=0.01 D=0.1 D=0.5

zB=0.1 zB=0.5 zB=1

Figure 5: Outcome of the competition of floating plant F and submerged plant S for different background light attenuation Kbg (upper
panels), dilution rate D (middle panels), and water column depth zB (lower panels). The parameter values are the same as in figure 2D, except
for the lower panels, where the background attenuation is nonzero (Kbg p 2), such that the water column depth influences the average light
availability for the submerged plant.
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ply (fig. 6, left panels). Thus, for these species, their asym- cies can coexist with another species when it suffers more

N P field observations
(1978-2006)1000

2000
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metrical competition for light does not lead to alternative
stable states. We found this pattern to be robust as it is
nearly insensitive (not shown here) to the chosen back-
ground attenuation and the chosen nutrient content of
the plants, where in figure 6, we used the average of their
reported minimal and maximal content. The found pat-
tern is in line with an extensive data set on observed veg-
etation in Dutch ditches from 1978 to 2006, where in al-
most half of the ditches in which duckweed or waterweed
were observed, they were found to coexist (fig. 6, right
panel). This combination of model results and field data
suggests that duckweed dominance is unlikely to be an al-
ternative stable state.

Discussion
In many places around the world, floating-plant domi-

nance is considered to be a true nuisance. Understanding
when floating plants dominate, and particularly knowing
whether their dominance can be a (self-enhancing) alter-
native stable state, is therefore a relevant issue for ecosys-
tem management. Our model shows that the dominance
of floating plants cannot be an alternative stable state in
light-limited environments: when light limitation is re-
duced by an increase of light, the submerged plant—which
can cope with the lowest light levels—starts to coexist with
and is eventually “outshaded” by the floating plant. The
fact that the plants coexist and do not show alternative
stable states can be explained by the requirement for stable
coexistence from classical competition theory, namely, that
intraspecific competition must be greater than interspe-
This content downloaded from 23.235.32
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from itself than from the other. In our model, the floating
plant does not compete for light with the submerged plant,
and therefore, in light-limited environments, the floating
plant always suffers more from itself by self-shading (in-
traspecific competition) than from the other (interspecific
competition), which leads to stable coexistence.
In nutrient-limited environments, the model predicts

that with increasing nutrient levels, submerged plants are
outcompeted by floating plants. This pattern was also
found in field studies and mesocosm studies (Portielje and
Roijackers 1995; Janes et al. 1996; Forchhammer 1999;
Netten et al. 2010). At intermediate nutrient levels, float-
ing and submerged plants can either coexist or are al-
ternative stable states, depending on their resource con-
sumption. The chance of alternative stable states increases
when the submerged plant consumes more nutrients com-
pared to the floating plant (the smaller kS/cS compared to
kF/cF), thus, the more the floating plant suffers from the sub-
merged plant than from itself. The semimechanistic model
of Scheffer et al. (2003) gives comparable results: alterna-
tive stable states occur only as long as the submerged plant
consumes more nutrients (per unit biomass) than the float-
ing plant. Their model predicts no alternative stable states
when the plants consume equal amounts of nutrients,
which is not per se the case in our model. We found that
for equal consumption traits (kS=cS p kF=cF), the plants
can still be alternative stable states (fig. 2) or coexist (not
shown here), depending on plant traits other than resource
consumption.
Interestingly, for increasing supply of nutrients and

light, the model predicts that the floating plant due to
duckweed outcompetes waterweed at a high resource sup- cific competition (Williamson 1957). In other words, a spe-
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its primacy for light can coexist with—or eventually out-
compete—the submerged plant, even when the submerged

ment—is sufficient to cause fundamentally different results
compared to unlayered communities.

The model presented here provides general insights into
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plant has the lowest resource requirements. This is not
possible in unlayered communities, as described in I*out-R*

theory (Huisman and Weissing 1995), where the species
with the lowest minimal resource requirements always out-
competes the other (R* rule). Another difference is that con-
sumption traits that lead to coexistence in unlayered com-
munities, namely, such that each species consumes more of
the resource that most limits its growth, may in our layered
community lead to alternative stable states, and vice versa
(see fig. 4, where kF=cF < kS=cS may lead to alternative sta-
ble states and kF=cF > kS=cS may lead to coexistence). Re-
lated to this, the layeredness of species leads to a richer
competition outcome in the sense that the same two spe-
cies can, depending on the environmental conditions, co-
exist or be alternative stable states, whereas in unlayered
communities, the same two species either coexist or be al-
ternative stable states.

Thus, compared to unlayered communities as described
in I*out-R* theory, the layeredness—and associated asymme-
try in competition for light—leads to fundamentally differ-
ent results. Appendix B illustrates this by showing why the
graphical isocline approach, which is used in I*out-R* theory
as well as in R* theory (Tilman 1980) to predict the com-
petition outcome, does not apply to layered communities.

Interestingly, more complex phytoplankton models of
asymmetrical competition predict similar differences, al-
though in these cases, there are, next to the primacy for
light, more mechanisms at play that could cause these dif-
ferences. For example, in the model of Jäger and Diehl
(2014), asymmetrical competition for nutrients codeter-
mines the competition outcome. In their double-asymmetric
model, not only do the upper species (pelagic algae) have
the primacy for light but the lower species (benthic algae)
have the primacy for nutrients, as they assumed that the
nutrients are supplied from below. Furthermore, Ryabov
and Blasius (2011) found that differences in the dispersal
ability of pelagic algae imply that a species with lower re-
source requirements can be outcompeted by a species with
higher dispersal ability. In addition, the nonuniform nu-
trient environment in these models of pelagic algae—due
to limited mixing of the water combined with nutrient
supply from below—was found to explain that consump-
tion traits that lead to coexistence in unlayered communi-
ties may lead to alternative stable states, and vice versa
(Yoshiyama et al. 2009; Ryabov and Blasius 2011). How-
ever, our study shows that even in a uniform nutrient envi-
ronment—that is, no nutrient gradient with depth—similar
results can be found. We show that the most parsimo-
nious form of asymmetrical competition—asymmetrical
competition for light coincident with symmetry in com-
petition for nutrients in a homogeneous nutrient environ-
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Our theoretical framework can also be used to study the
competition between free-floating plants and phytoplank-
ton. De Tezanos Pinto and O’Farrell (2014) state that field
studies suggest that floating plants and phytoplankton are
alternative stable states but that mathematical models are
needed for more conclusive evidence. Our model may also
be useful to study resource competition of terrestrial plants
with different canopy positions.
For floating and submerged plant species that are com-

mon in temperate regions (Lemna sp. duckweed and Elo-
dea sp. waterweed), both model and field data suggest that
the occurrence of alternative stable states is unlikely. In-
stead, the species coexist or outcompete each other. This
implies that floating-plant dominance may be a less per-
sistent ecosystem state than suggested by Scheffer et al.
(2003). We found similar model results (not shown here)
when parameterizing both species directly from the litera-
ture, instead of from the ecosystem model PCDitch (Janse
1998). For both parameterizations, we kept the light atten-
uation coefficient k of Lemna sp. equal to that of Elodea
sp. because little is known about k. In the model, we as-
sumed that submerged plants take up nutrients only from
the water column, whereas most submerged plants like
waterweed can also take up nutrients from the sediment
by their roots (Barko et al. 1991). Taking this into account
will probably reduce the chance of alternative stable states
even further, as a floating plant does not suffer from a sub-
merged plant that takes up nutrients from the sediment
only, which promotes coexistence instead of alternative sta-
ble states. We probably overestimated the nutrient load-
ing needed for dominance of Lemna sp. because our model
does not take into account nutrient recycling by water
plants due to die-off. These processes, as well as other im-
portant phenomena in aquatic ecosystems such as variable
stoichiometry, seasonal dynamics in light, nutrients, tem-
perature, and phenology, are accounted for in more com-
plex models such as PCDitch (Janse 1998) but at the cost
of general insights into the dominant mechanisms and the
way they interact.

Conclusions
the competition for light and nutrients in layered commu-
nities of aquatic plants. At a high supply of light and nu-
trients, floating plants always outcompete submerged plants
due to their primacy for light, even when submerged plants
have lower resource requirements. The occurrence of co-
existence or alternative stable states depends on the envi-
ronmental conditions: in light-limited environments, the
plants are never alternative stable states, whereas in nutrient-
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limited environments, the plants coexist or are alternative
stable states depending on their resource consumption traits.

Gerla, D. J., W. M. Mooij, and J. Huisman. 2011. Photoinhibition
and the assembly of light-limited phytoplankton communities.
Oikos 120:359–368.
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Compared to unlayered communities, the layeredness—
and associated asymmetry in competition for light—leads
to fundamentally different results: the competition out-
come can no longer be predicted from species traits such
as minimal resource requirement (R* rule) and resource
consumption. Also, it leads to a richer competition outcome
in the sense that the same two species can, depending on the
environment, coexist or be alternative stable states. For two
common plant species in temperate regions, both the model
and field data suggest that floating-plant dominance is un-
likely to be a (self-enhancing) alternative stable state. This
would ease ecosystem management that aims to reduce
floating-plant dominance.
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