812 research outputs found

    Bounding the efficiency of road pricing

    Get PDF
    This paper deals with the following question associated with congestion pricing in a general network with either fixed or elastic travel demand: what is the maximum efficiency loss of a general second-best pricing scheme due to inexact marginal-cost pricing in comparison with the first-best pricing or system optimum case? A formal answer to this question is provided by establishing an inefficiency bound associated with a given road pricing scheme. An application of the methods is provided for the practical trial-and-error implementation of marginal-cost pricing with unknown demand functions

    AMS 14

    Get PDF
    This paper describes all the major procedures adopted by the Scottish Universities Environmental Research Centre (SUERC) Radiocarbon Dating Laboratory. This includes sample pretreatment, graphite production, accelerator mass spectrometry (AMS) measurement, associated stable isotope measurements, data handling, and age calculations, but with the main emphasis being on the chemical pretreatment methods. All of the above enable the laboratory to provide a complete analytical service comprising advice on sample selection, preparation and analysis of samples, and Bayesian analysis of resulting 14C (and other) data. This applies to both our research and commercial activities. The pretreatment methods that we mainly focus on are used to remove contaminant carbon from a range of sample types or to isolate a particular chemical fraction from a sample prior to combustion/hydrolysis, graphitization, and subsequent AMS 14C measurement. The methods described are for bone (collagen extraction, with and without ultrafiltration), cremated bone, tooth enamel, charcoal, grain, carbon residues, shell, wood (including alpha-cellulose isolation), peat, sediments, textiles, fuel/biofuel, and forensic samples

    Electronic structure and band parameters for ZnX (X = O, S, Se, Te)

    Full text link
    First-principles density-functional calculations have been performed for zinc monochalcogenides with zinc-blende- and wurtzite-type structures. It is shown that the local-density approximation underestimates the band gap, misplaces the energy levels of the Zn-3d states, and overestimates the crystal-field splitting energy. Without spinorbit coupling, the order of the states at the top of VB is found to be normal for all the ZnX phases considered. Upon inclusion of the spinorbit coupling in calculations, ZnO in zinc-blende- and wurtzite-type phases become anomalous. It is shown that the Zn-3d electrons are responsible for the anomalous order. The effective masses of electrons and holes have been calculated and found that holes are much anisotropic and heavier than the electrons in agreement with experimental findings. The typical errors in calculated band gaps and related parameters originate from strong Coulomb correlations, which are found to be highly significant in ZnO. The LDA+U approach is found to correct the strong correlation of the Zn-3d electrons, and thus improves the agreement with the experimentally established location of the Zn-3d levels. Consequently, it increases significantly the parameters underestimated in the pure LDA calculations.Comment: 7 pages, 3 figures, 2 tables, ICAM-ICMAT conference, 200

    The effect of the spin-orbit interaction on the band gap of half-metals

    Get PDF
    The spin-orbit interaction can cause a nonvanishing density of states (DOS) within the minority-spin band gap of half-metals around the Fermi level. We examine the magnitude of the effect in Heusler alloys, zinc-blende half metals and diluted magnetic semiconductors, using first-principles calculations. We find that the ratio of spin-down to spin-up DOS at the Fermi level can range from below 1% (e.g. 0.5% for NiMnSb) over several percents (4.2% for (Ga,Mn)As) to 13% for MnBi.Comment: 5 pages, 3 figure

    B Cells and T Follicular Helper Cells Mediate Response to Checkpoint Inhibitors in High Mutation Burden Mouse Models of Breast Cancer

    Get PDF
    This study identifies mechanisms mediating responses to immune checkpoint inhibitors using mouse models of triple-negative breast cancer. By creating new mammary tumor models, we find that tumor mutation burden and specific immune cells are associated with response. Further, we developed a rich resource of single-cell RNA-seq and bulk mRNA-seq data of immunotherapy-treated and non-treated tumors from sensitive and resistant murine models. Using this, we uncover that immune checkpoint therapy induces T follicular helper cell activation of B cells to facilitate the anti-tumor response in these models. We also show that B cell activation of T cells and the generation of antibody are key to immunotherapy response and propose a new biomarker for immune checkpoint therapy. In total, this work presents resources of new preclinical models of breast cancer with large mRNA-seq and single-cell RNA-seq datasets annotated for sensitivity to therapy and uncovers new components of response to immune checkpoint inhibitors

    STING agonist promotes CAR T cell trafficking and persistence in breast cancer

    Get PDF
    CAR T therapy targeting solid tumors is restrained by limited infiltration and persistence of those cells in the tumor microenvironment (TME). Here, we developed approaches to enhance the activity of CAR T cells using an orthotopic model of locally advanced breast cancer. CAR T cells generated from Th/Tc17 cells given with the STING agonists DMXAA or cGAMP greatly enhanced tumor control, which was associated with enhanced CAR T cell persistence in the TME. Using single-cell RNA sequencing, we demonstrate that DMXAA promoted CAR T cell trafficking and persistence, supported by the generation of a chemokine milieu that promoted CAR T cell recruitment and modulation of the immunosuppressive TME through alterations in the balance of immune-stimulatory and suppressive myeloid cells. However, sustained tumor regression was accomplished only with the addition of anti-PD-1 and anti-GR-1 mAb to Th/Tc17 CAR T cell therapy given with STING agonists. This study provides new approaches to enhance adoptive T cell therapy in solid tumors

    Microwave assisted low temperature synthesis of MnZn ferrite nanoparticles

    Get PDF
    MnZnFe2O4ferrite nanoparticles were prepared by co-precipitation method using a microwave heating system at temperature of 100 °C. X-ray diffraction reveals the samples as prepared are pure ferrite nanocrystalline phase, transmission electron microscopy image analysis shows particles are in agglomeration state with an average size of about 10 nm, furthermore, crystal size of samples are increased with longer microwave heating

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
    • …
    corecore