570 research outputs found

    Nucleon Charge and Magnetization Densities from Sachs Form Factors

    Full text link
    Relativistic prescriptions relating Sachs form factors to nucleon charge and magnetization densities are used to fit recent data for both the proton and the neutron. The analysis uses expansions in complete radial bases to minimize model dependence and to estimate the uncertainties in radial densities due to limitation of the range of momentum transfer. We find that the charge distribution for the proton is significantly broad than its magnetization density and that the magnetization density is slightly broader for the neutron than the proton. The neutron charge form factor is consistent with the Galster parametrization over the available range of Q^2, but relativistic inversion produces a softer radial density. Discrete ambiguities in the inversion method are analyzed in detail. The method of Mitra and Kumari ensures compatibility with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have been added and several discussions have been clarified with no significant changes to the conclusions. Now contains 47 pages including 21 figures and 2 table

    Relativistic Structure of the Deuteron: 1.Electro-disintegration and y-scaling

    Get PDF
    Realistic solutions of the spinor-spinor Bethe-Salpeter equation for the deuteron with realistic interaction kernel including the exchange of pi, sigma, omega, rho, eta and delta mesons, are used to systematically investigate relativistic effects in inclusive quasi-elastic electron-deuteron scattering within the relativistic impulse approximation. Relativistic y-scaling is considered by generalising the non relativistic scaling function to the relativistic case, and it is shown that y-scaling does occur in the usual relativistic scaling variable resulting from the energy conservation in the instant form of dynamics. The present approach of y-scaling is fully covariant, with the deuteron being described by eight components, viz. the 3S_1^{++}, 3S_1^{--}, 3D_1^{++}, 3D_1^{--}, 3P_1^{+-}, 3P_1^{-+}, 1P_1^{+-}, 1P_1^{-+} waves. It is demonstrated that if the negative relative energy states 1P_1, 3P_1 are disregarded, the concept of covariant momentum distributions N(p_0,p), with p_0=M_D/2-\sqrt{p^2+m^2}, can be introduced, and that calculations of lectro-disintegration cross section in terms of these distributions agree within few percents with the exact calculations which include the 1P_1, 3P_1 states, provided the nucleon three momentum |p|\<= 1 GeV/c; in this momentum range, the asymptotic relativistic scaling function is shown to coincide with the longitudinal covariant momentum distribution.Comment: 32 LaTeX pages, 18 eps-figures. Final version to appear in Phys. Rev.

    Analyzing-Power Measurements for (p,n) Reactions

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Recoil Polarization for Delta Excitation in Pion Electroproduction

    Get PDF
    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q^2=1.0 (GeV/c)^2, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.Comment: 5 pages, 2 figures, for PR

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,ep)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,ep)γ(e,e'p)\gamma to H(e,ep)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Smoothed Particle Hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of Al and associated free-surface problems

    Get PDF
    A Smoothed Particle Hydrodynamics (SPH) numerical model is developed to simulate pulsed-laser ablation processes for micro-machining. Heat diffusion behaviour of a specimen under the action of nanosecond pulsed lasers can be described analytically by using complementary error function solutions of second-order differential equations. However, their application is limited to cases without loss of material at the surface. Compared to conventional mesh-based techniques, as a novel meshless simulation method, SPH is ideally suited to applications with highly non-linear and explosive behaviour in laser ablation. However, little is known about the suitability of using SPH for the modelling of laser-material interactions with multiple phases at the micro scale. The present work investigates SPH modelling of pulsed-laser ablation of aluminium where the laser is applied directly to the free-surface boundary of the specimen. Having first assessed the performance of standard SPH surface treatments for functions commonly used to describe laser heating, the heat conduction behaviour of a new SPH methodology is then evaluated through a number of test cases for single- and multiple-pulse laser heating of aluminium showing excellent agreement when compared with an analytical solution. Simulation of real ablation processes, however, requires the model to capture the removal of material from the surface and its subsequent effects on the laser heating process. Hence, the SPH model for describing the transient behaviour of nanosecond laser ablation is validated with a number of experimental and reference results reported in the literature. The SPH model successfully predicts the material ablation depth profiles over a wide range of laser fluences 4–23 J/cm2 and pulse durations 6–10 ns, and also predicts the transient behaviour of the ejected material during the laser ablation process. Unlike conventional mesh-based methods, the SPH model was not only able to provide the thermo-physical properties of the ejected particles, but also the effect of the interaction between them as well as the direction and the pattern of the ejection

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore