989 research outputs found

    Star-graph expansions for bond-diluted Potts models

    Full text link
    We derive high-temperature series expansions for the free energy and the susceptibility of random-bond qq-state Potts models on hypercubic lattices using a star-graph expansion technique. This method enables the exact calculation of quenched disorder averages for arbitrary uncorrelated coupling distributions. Moreover, we can keep the disorder strength pp as well as the dimension dd as symbolic parameters. By applying several series analysis techniques to the new series expansions, one can scan large regions of the (p,d)(p,d) parameter space for any value of qq. For the bond-diluted 4-state Potts model in three dimensions, which exhibits a rather strong first-order phase transition in the undiluted case, we present results for the transition temperature and the effective critical exponent Îł\gamma as a function of pp as obtained from the analysis of susceptibility series up to order 18. A comparison with recent Monte Carlo data (Chatelain {\em et al.}, Phys. Rev. E64, 036120(2001)) shows signals for the softening to a second-order transition at finite disorder strength.Comment: 8 pages, 6 figure

    Low-Loss All-Optical Zeno Switch in a Microdisk Cavity Using EIT

    Full text link
    We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent field which suppresses the cavity field buildup and alters the path of a weak signal beam. We predict more than 35 dB of switching contrast with less than 0.1 dB loss using just 2 micro-Watts of control-beam power for signal beams with less than single photon intensities inside the cavity.Comment: Updated with new references, corrected Eq 2a, and added introductory text. 7 pages, 5 figures, 3 table

    Stuffed Rare Earth Pyrochlore Solid Solutions

    Full text link
    Synthesis and crystal structures are described for the compounds Ln2(Ti2-xLnx)O7-x/2, where Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu, and x ranges from 0 to 0.67. Rietveld refinements on X-ray powder diffraction data indicate that in Tb and Dy titanate pyrochlores, extra Ln3+ cations mix mainly on the Ti4+ site with little disorder on the original Ln3+ site. For the smaller rare earths (Ho-Lu), stuffing additional lanthanide ions results in a pyrochlore to defect fluorite transition, where the Ln3+ and Ti4+ ions become completely randomized at the maximum (x=0.67). In all of these Ln-Ti-O pyrochlores, the addition of magnetic Ln3+ in place of nonmagnetic Ti4+ adds edge sharing tetrahedral spin interactions to a normally corner sharing tetrahedral network of spins. The increase in spin connectivity in this family of solid solutions represents a new avenue for investigating geometrical magnetic frustration in the rare earth titanate pyrochlores.Comment: 25 pages, 7 figures, submitted to J. Solid State Che

    Temporal build-up of electromagnetically induced transparency and absorption resonances in degenerate two-level transitions

    Get PDF
    The temporal evolution of electromagnetically induced transparency (EIT) and absorption (EIA) coherence resonances in pump-probe spectroscopy of degenerate two-level atomic transition is studied for light intensities below saturation. Analytical expression for the transient absorption spectra are given for simple model systems and a model for the calculation of the time dependent response of realistic atomic transitions, where the Zeeman degeneracy is fully accounted for, is presented. EIT and EIA resonances have a similar (opposite sign) time dependent lineshape, however, the EIA evolution is slower and thus narrower lines are observed for long interaction time. Qualitative agreement with the theoretical predictions is obtained for the transient probe absorption on the 85Rb^{85}Rb D2D_{2} line in an atomic beam experiment.Comment: 10 pages, 9 figures. Submitted to Phys. Rev.

    A data mining algorithm for automated characterisation of fluctuations in multichannel timeseries

    Full text link
    We present a data mining technique for the analysis of multichannel oscillatory timeseries data and show an application using poloidal arrays of magnetic sensors installed in the H-1 heliac. The procedure is highly automated, and scales well to large datasets. The timeseries data is split into short time segments to provide time resolution, and each segment is represented by a singular value decomposition (SVD). By comparing power spectra of the temporal singular vectors, singular values are grouped into subsets which define fluctuation structures. Thresholds for the normalised energy of the fluctuation structure and the normalised entropy of the SVD are used to filter the dataset. We assume that distinct classes of fluctuations are localised in the space of phase differences between each pair of nearest neighbour channels. An expectation maximisation clustering algorithm is used to locate the distinct classes of fluctuations, and a cluster tree mapping is used to visualise the results.Comment: 14 pages, 8 figure

    Susceptibility and dilution effects of the kagome bi-layer geometrically frustrated network. A Ga-NMR study of SrCr_(9p)Ga_(12-9p)O_(19)

    Full text link
    We present an extensive gallium NMR study of the geometrically frustrated kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome bi-layer susceptibility and separate the intrinsic properties due to the geometric frustration from those related to the site dilution. Our major findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%. The maximum reveals the development of short range antiferromagnetic correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in the macroscopic susceptibility is associated to paramagnetic defects which stem from the dilution of the kagome bi-layer. The low-T analysis of the NMR lineshape suggests that the defect can be associated with a staggered spin-response to the vacancies on the kagome bi-layer. This, altogether with the maximum in the kagome bi-layer susceptibility, is very similar to what is observed in most low-dimensional antiferromagnetic correlated systems; 4) The spin glass-like freezing observed at T_g=2-4 K is not driven by the dilution-induced defects.Comment: 19 pages, 19 figures, revised version resubmitted to PRB Minor modifications: Fig.11 and discussion in Sec.V on the NMR shif

    Excluded Volume Effects in the Quark Meson Coupling Model

    Full text link
    Excluded volume effects are incorporated in the quark meson coupling model to take into account in a phenomenological way the hard core repulsion of the nuclear force. The formalism employed is thermodynamically consistent and does not violate causality. The effects of the excluded volume on in-medium nucleon properties and the nuclear matter equation of state are investigated as a function of the size of the hard core. It is found that in-medium nucleon properties are not altered significantly by the excluded volume, even for large hard core radii, and the equation of state becomes stiffer as the size of the hard core increases.Comment: 14 pages, revtex, 6 figure

    The helium trimer with soft-core potentials

    Get PDF
    The helium trimer is studied using two- and three-body soft-core potentials. Realistic helium-helium potentials present an extremely strong short-range repulsion and support a single, very shallow, bound state. The description of systems with more than two helium atoms is difficult due to the very large cancellation between kinetic and potential energy. We analyze the possibility of describing the three helium system in the ultracold regime using a gaussian representation of a widely used realistic potential, the LM2M2 interaction. However, in order to describe correctly the trimer ground state a three-body force has to be added to the gaussian interaction. With this potential model the two bound states of the trimer and the low energy scattering helium-dimer phase shifts obtained with the LM2M2 potential are well reproduced.Comment: 15 pages, 3 figures, submitted to Few-Body System
    • …
    corecore