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THE NIL HECKE RING AND
SINGULARITY OF SCHUBERT VARIETIES

SHRAWAN KUMAR

Introduction

Let G be a semi-simple simply-connected complex algebraic group and T' C B
a maximal torus and a Borel subgroup respectively. Let h = Lie T' be the Cartan
subalgebra of the Lie algebra Lie G, and W := N(T')/T the Weyl group associated
to the pair (G,T), where N(T') is the normalizer of 7" in G. We can view any
element w = w mod T € W as the element (denoted by the corresponding German
character) w of G/B, defined as to = wB. For any w € W, there is associated the
Schubert variety X,, := BwB/B C G/B and the T'—fixed points of X,, (under the
canonical left action) are precisely I,, ;= {v:v € W and v < w}.

We (together with B. Kostant) have defined a certain ring Qw (7)) (which is
the smash product of the group algebra Z[W] with the W —field Q(T') of rational
functions on the torus T' ) and certain elements y,, € Qw (T) (for any w € W).
Expressing the elements y,, in the {J,},cw basis:

Yw = Z bw—l,v—15v7

we get the matrix B = (by,-1 ,—1)w,vew With entries in Q(T) (cf. Definition 2.1(d)).
Analogously, we defined the nil Hecke ring Qw ( which is the smash product of
the group algebra Z[W] with the W—field Q(h) of rational functions on the Cartan
subalgebra ) and certain elements z,, € Qy . Writing

Ly = E wal,vflévv

we get another matrix C' = (cy-1 y—1)w,vew With entries in Q(b) (cf. Definition
3.1(b)).

We prove that the formal T-character of the ring of functions on the scheme the-
oretic tangent cone Ty, (X,,) (for any v € I,,) is nothing but *b,,~1 ,—1 (cf. Theorem
2.2), where * is the involution of Q(T') given by e* s e~*. This sharpens a result
due to Rossmann [R]. In fact this work of Rossmann, and our own work with B.
Kostant on the equivariant K-theory of flag varieties, motivated our current work.
The proof of Theorem (2.2) requires the Demazure character formula, and occupies
§2 of this paper. We use this theorem to prove that b,,-1 ,-: # 0 if and only if
v < w, and in this case it has a pole of order exactly equal to ¢(w). Similarly
Cy-1,5-1 7 0 if and only if v <w (cf. Corollaries 3.2).

We study the graded algebra structure on the space of functions Gr (O, x,, ) on
the scheme theoretic tangent cone Ty, (X,,) in §4. Our principal result in this direc-
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arises from the natural filtration of the Demazure module v=1V,,()\) induced from
the standard filtration of the universal enveloping algebra U(u™), where u~ is the
nil-radical of the opposite Borel subalgebra and V,,(\) is defined in §1. We use this
theorem to derive a result due to Carrell-Peterson asserting that for simply-laced
G, a point v € X,, is rationally smooth if and only if the reduced tangent cone
Tied(X,,) is an affine space for all v < § < w (cf. Corollary 4.11).

The principal result of our paper is a necessary and sufficient condition for a
point v € X,, to be smooth, in terms of the matrix entry c,,-1 ,~1 (cf. Theorem 5.5
(b)). This result asserts that for any v < w € W, the point v € X,, is smooth <

Cy—19p-1 = (_1>£(w)—Z(v) H B_la

peS(w=tovt)

where S(w=t,v71) :={a € Ay v tr, <w 1}

There is a very similar criterion for a point v € X,, to be rationally smooth
(cf. Theorem 5.5(a)). This criterion of rational smoothness can be easily deduced
by combining some results of Dyer and Carrell-Peterson, but we give a different
geometric proof as that proof is used crucially to prove our criterion of smoothness
mentioned above ( i.e. Theorem 5.5(b)).

It should be mentioned that the elements c,-1,-1 (as well as b,-1 ,-1) are
defined combinatorially and admit closed expressions (cf. Lemma 3.4).

The nil Hecke ring approach to singularity, developed in this paper, is applied
to some specific examples discussed in §§6 and 7. In §6, we determine the precise
singular locus of any Schubert variety in any rank-2 group (cf. Proposition 6.1).
I believe this result should be well known, but I did not find it explicitly written
down in the literature. In §7, we use our Theorem (5.5) to study the smoothness
(and rational smoothness) of codimension one Schubert varieties X; in any G/B.
Proposition (7.4) (resp. Corollary 7.6) gives a criterion for a point v € X; to be
smooth (resp. rationally smooth). This criterion is applied to give a complete list
of codimension one smooth (as well as rationally smooth) Schubert varieties in any
G /B (cf. Proposition 7.8).

Finally in §8, we extend our main result giving the criterion of smoothness to
arbitrary (not even symmetrizable) Kac-Moody groups (cf. Theorem 8.9). We also
extend our result determining the formal character of the ring of functions on the
scheme theoretic tangent cone at any v € X,, to arbitrary Kac-Moody groups (cf.
Theorem 8.6). The proofs in the Kac-Moody case are similar to the finite case, and
hence we have been brief and outlined only the necessary changes.

There are other criteria for smoothness due to Lakshmibai-Seshadri (for classical
groups) [LS] [L], Ryan (for SL(n)) [Ry], ...; and for rational smoothness due to
Kazhdan-Lusztig [KL], Carrell-Peterson [C], Jantzen [J], ... ; and by works of
Deodhar and Peterson rational smoothness implies smoothness for simply-laced
groups. It may be mentioned that our criterion for smoothness (as in Theorem
5.5(b) ) is applicable to all G uniformly, in contrast to the above mentioned criteria
for smoothness. We refer the reader to two survey articles, one by Carrell [C2], and
the other by Deodhar [D2].

The main results of this paper were announced in [Ku2].

Acknowledgements. 1 am grateful to W. Rossmann, D. Peterson, and J. B.
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1. Notation

For a complex vector space V (possibly infinite dimensional) , V* denotes its full
vector space dual. For a finite set .S, #S denotes its cardinality.

Let G be a semi-simple simply-connected complex algebraic group, and let B
be a fixed Borel subgroup and 7' C B a maximal torus. Let B~ be the (opposite)
Borel subgroup such that B~ N B =T. We denote by U (resp. U™) the unipotent
radical of B (resp. B~). Let g,b,b—,u,u" b be the Lie algebras of the groups
G,B,B~,U, U™, T respectively. Let A C h* (resp. A ) denote the set of roots for
the pair (G,T) (resp. (B,T)). Let {ay, -+ ,a,} be the set of simple roots in A
and let {ay, -+, a, '} be the corresponding (simple) coroots (where n = rank G).

Let W := N(T')/T be the Weyl group (where N (T') is the normalizer of 7" in G)
of G. Then W is a Coxeter group, generated by the simple reflections {rq, -+ ,7,}
(where r; is the reflection corresponding to the simple root «;). In particular, we
can talk of the length ¢(w) of any element w € W. We denote the identity element
of W by e.

Let b3 :={X € h* : M) € Z, for all i} be the set of integral weights and D :=
{Aebh:Aa)) >0, for all i} (resp. D°:={X € b} : M) >0, for all i}) the set
of dominant (resp. dominant regular) integral weights. For any A € D and w € W,
we denote by V() the irreducible representation of G with highest weight A, and
Viw () is the smallest B—submodule of V() containing the extremal weight vector
ewx (of weight w). Let R(T) := Z[X(T)] be the group algebra of the character
group X (T) of the torus T'. Then {e*} ¢y are precisely the elements of X (T'). Let
Q(T) be the quotient field of R(T"). Clearly W acts on Q(7") and moreover Q(T")
admits an involution * (i.e. a field automorphism of order 2) taking e* — e~

For any w € W, the Schubert variety X, is by definition the closure BwB/B of
BwB/B in G/B under the Zariski topology (where the notation BwB/B means
BwB/B for any representative w of w in N(T') ). Then X, is an irreducible
(projective) subvariety of G/B of dimension ¢(w). We can view any element w = w
mod 7" € W as the element (denoted by the corresponding German character) to
of G/B, defined as o = wB. By the Bruhat decomposition, any v such that v < w
belongs to X,,, where < is the Bruhat (or Chevalley) partial order in W. The
Schubert variety X,, is clearly B—stable (in particular T'—stable), under the left
multiplication of B on G/B. The T—fixed points of X,, are precisely I,, := {v :
v € W and v < w}. For any variety X over C, we denote by C[X] the ring of
global regular functions X — C. For any A € b7, let C\ be the 1-dimensional
representation of B given by the character e* and let £(\) be the line bundle on
G/ B associated to the principal B-bundle G — G/ B via the representation C_ ) of
B.

2. Character of the ring of functions on the tangent cone of Xy,

We follow the notation as in §1.
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graded R/m—algebra:
gr Ri=)» m"/m".
n>0

Let X be a scheme of finite type over an algebraically closed field and let x be
a closed point of X. Then the tangent cone T,(X) of X at z is, by definition (cf.
[M, Chapter 3, §3]), Spec (gr O,), where O, = O, x is the local ring at x € X.

(b) Let ]% be the set of all the formal sums Z nxe’, with arbitrary ny € Z
ereX(T)

(we allow infinitely many of the n\s to be non-zero). Even though R(T') is not a
ring, it has a canonical R(7)—module structure (got by the multiplication). We

—_—~— —_~—

define the Q(T")—module Q(T') as Q(T) ®g(ry R(T). Since Q(T') is a flat R(T)—

—_~—

module, Q(T") canonically embeds in Q(T).

(c) A T—module M is said to be a weight module if M = ©.xcx )My, where
My = {m € M : tm = e*(t)m} is the A—th weight space. A weight module M is
said to be an admissible T—module if dim My < oo, for all e* € X (T).

For any admissible T'—module M, one can define its formal character ch M :=

Z (dim M) e* as an element of R(T).
ereX(T)

(d) The ring Q(T)w ([KK2, Section 2]): Let Q(T)w be the smash product of the
W —field Q(T') with the group algebra Z[W], i.e., Q(T)w is a free right Q(7")—module
with basis {0, }wew and the multiplication is given by:

(1) (Cun@1)-(6u0,02) = Fuya0n (W3 1) g2, for q1,q2 € Q(T) and wy,wy € W.

For any simple reflection r;,1 <i < n, define the element y,, € Q(T)w by:

(2) Yr, = (0 + 5m>m-

Now, for any w € W, define y,, € Q(T)w by
(3) Yw = yTil o yrip7

where w = r;, -- -7 is a reduced decomposition. By [KK2, Proposition 2.4], y,, is
well defined. Write

(4) Yw = wa—l,v—15v7

for some (unique) b,,-1,-1 € Q(T'). It can be esily seen that b,-1 ,—1 = 0 unless
v < w (cf. [KK2, Proposition 2.6]).
The ring Q(T)w has a canonical representation in Q(7') defined by

(5) (0wq1).q2 = w(q1G2).

It is easy to see that for any r; , y,,.R(T) C R(T) , in particular, y,,.R(T) C R(T)
for any w e W.

Since v € X, is fixed under the action of T' (cf. §1), the local ring O, x, at

P v . e 11 . m 1.1 .
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(2.2) Theorem. Take anyv <w € W. Then gr O, x,, is an admissible T —module
and moreover
ch ( gr Oy x,,) = *by-1 -1,

—~— —_~—

as elements of Q(T), where ch (which is an element of R(T)) is to be thought of as

the element 1 ® ch ofé?T/) = Q(T) ®r(1) ézf)
In particular, ch(gr Oy x,) € Q(T).

Before we come the proof of Theorem (2.2), we need the following preparation.
We recall the following very simple lemma without proof.

(2.3) Lemma. LetY be an irreducible projective variety with an ample line bundle
£ on Y, together with a non-zero o € H°(Y, £). Define the variety Y° := Y\ Z (o),
where Z (o) is the zero-set of o. Then Y° is affine and moreover for any f € C[Y°],
there exists an > 0 (depending upon f) such that the section f-o™ (of HO(Y?, £5™))
extends as an element of HO(Y, £57).

(2.4) Lemma. Given any f € C[U™]|, there exists a large enough \ € D (i.e.
AMa) >> 0, for all the simple coroots ') and 0 € V(A\)* such that

flg) =(0,gex), forge U™,

where ey is a non-zero highest weight vector of V().
Moreover, for anyv < w € W, f vanishes on (v 'BwB)NU~ & 0 € (V(\)/v™1V,(\))*.

Proof. The first part is due to Andersen and also Cline-Parshall-Scott [CPS, §5].
However, for completeness, we give a proof.

By the Borel-Weil theorem (for any A € D), x : V(A\)* = HY(G/B, £()\)), where
for any ¢ € V(A)*, x(¢) is given by the section x(¢)(gB) = (g,g_lqb‘cﬁ) mod B.
(Observe that Cey C V() is a one-dimensional representation of B corresponding
to the character e* and hence (Cey)* corresponds to the character e=*.) Let ¢y €
V(M\)* be the element defined by ¢x(ex) =1 and ¢y (v) = 0, for any weight vector
v € V() of weight u # X. Consider U~ ~ U~ -¢ C G/B as an open subset and take
any (ample) line bundle £(\,) on G/B for A\, € D°. Taking the section o = x(¢x,)
of £(X,) and applying Lemma (2.3), we get the first part of the lemma for A = n,
(for some n > 0). (Observe that Z(c) = G/B\ U~ .¢, since \, is regular.)

Let f : G — C be the extension of f given by f(g) = (0,gey). Then, since
v~ BwB is an irreducible subvariety of G, and by Bruhat decomposition v~ BwBN
U~ B is non-empty open subset of v BwB,

f vanishes on v 'BwB N U~ < f vanishes on v 'BwB N (U™ - B)
& f vanishes on v 'BwB
& f vanishes on v~ 'BwB
& (0, v Bwey) =0

& (0, vV, (V) = 0.

Mmoo Y T m



6 SHRAWAN KUMAR

For any A € D, define the map
ox: V(A" ®@Cy\ — ClUT]
by pa(B®ex)(g) = (0, ger), for 8 € V(N)*, g € U™ and ey € Cy; where Cy C V())
is identified as the highest weight space.

(2.5) Lemma. o, is T-equivariant with respect to the adjoint action of T on U™,
and is an injective map.

Proof. For any t € T,

oA (td @ tey)(g) = (t0, gtey)
= <9,t_1gte,\>
= (t- a0 ®er))(9).

This proves the T-equivariance of ).

To prove the injectivity of @), take 0 @ ey € kerpy, i.e., (0,gey) = 0, for all
g € U~. Hence (0,gbey) = 0 for all g € U~ and b € B. In particular, by the
density of U™ B in G and the irreducibility of V(\), we get (0, V(\)) = 0, i.e.,
6 = 0, proving the injectivity of ). U

§(2.6) For any v € D, let us choose a highest weight vector e, € V (), and define
(for any A\, u € D)

VO+0) v e v 5 v e c,,

where 7y ,, is the unique G-module map taking e, — ex®e, and 7, : V(u) = C,
is the T-equivariant projection onto the highest weight space C, = Ce, C V(u).
We denote the composite map (Id ® 7,) 0 i, : V(A +p) = V(A) @ C, by 0y .
Dualizing the above, we get the map

Sk,u V) ®@C_), = V(A+p)",
and hence the map

Sap =0, @Id :VIN)*@Cr = V(AN)*®@C_, @Cryy = VA +u)* @Cxrip.

It is easy to see that dy , is injective. Moreover, the following diagram is commu-
tative:

Sxo .
VI @Cyx & VA+u)* ®Cxryy
O\  Prtu
ClU™]

By virtue of Lemma (2.4), for any A € D and v < w € W, we get the injective map

ox(v,w) : (vV(W)* ® Cy — C[(v" "BwB) N U],

) Y LY T I
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(2.7) Lemma. For \,p€ D andv <w € W, 6x (0" V(A + 1)) = vV (\) ®
C,. In particular, there exists a unique map 0y, (v, w) making the following diagram
commutative:

V(A)* @ Cy — (v WW(N)* @ Cy

J/(S)\,[J, J/(S)\,,u.(vaw)

VOA+ 1) ®@Crsp —— (0 V(A +p)* ® Crgy
where the horizontal maps are the canonical restriction maps. Moreover, 6, (v, w)
18 1njective.
Proof. For b € B,

(1) Ox (07 bieny,) = 0 bwey @ [0 biwe,] .,

where [7], denotes the component of x € V(i) in the u* weight space, and ©
is a representative of v in N(7T'). Define the closed subvariety Y C B by Y =
{b € B:[v"tbwe,], = 0}. Then Y # B, for otherwise e, ¢ v~'V,, (1), which is a
contradiction (since v < w by assumption). Hence for b € B\Y, 5A7M(i_lbwe>\+u) =
v~ bwey ® e, up to a non-zero scalar. But since SAM(v_le()\ + 1)) is a (closed)
linear subspace and B\Y is dense in B,

vV ® CuC Sx\,LL("U_le()‘ + 1))

The inverse inclusion is clear from (1). This proves the first part of the lemma.
The ‘in particular’ statement follows immediately from dualizing the map

~

Y v WA+ p) — v VLA @ Cy.

=1y, ()

The injectivity of ) ,(v, w) follows from the surjectivity of 5 Ay . O
v T Vi (A+p)

By virtue of the above lemma, we get the following commutative diagram:

Ox,p(v,w)

(v V(M) ® Cy ey (v V(A + 11))* ® Cagp

Pa(v, W)\ Ot (v, w)
Clv™'BwBNU].
(2.8) Definition. Define a partial order < in D as follows:
A<pusSp—AeD.
Taking the limit of the maps ) (v, w), we get the T-equivariant map

(v, w) : limit_, (v'Vy(A\)* @ Cy\) — Clv ' BwBNU].
xeD
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(2.9) Proposition. The above map ¢(v,w) is an isomorphism, for allv < w € W.

Proof. Injectivity of the map (v, w) is clear from the injectivity of the maps
ox(v,w) and 0y, (v, w). Surjectivity of p(v, w) follows from Lemma (2.4). O

P

(2.10) Definition. For any directed set A and any sequence 6 : A — R(T), given

as 0(a) = > nex(r) nx(a)e with ny(a) € Z, we say that limlixt 0(a) = S nyet | if
ac

for any e* € X(T), there exists ay € A such that ny(a) = ny for all @ > ay. Of

course limlixt 0(«) may not exist in general.
ac

Observe that if lim/ixt () exists, then so is lim/ixt (pf()) , for any fixed p € R(T).
ae ac
Moreover

(1) liérg/ixt (pf(a)) =p lirg/ixt O(a) .

(2.11) Corollary. chrClo ' BwBNU™] = l;\mli)t (6y-1 - (€ * (Y - €))).
€

Proof. By the previous proposition and the Demazure character formula (cf. [A],
[Jo2], [Ra2, Remarks 4.4], [Se], [Ku, Theorem 3.4], [Ma]),
chrClo ' BwBNU™] = 1>i\renl'1)t (8y-1 - (" chp (Viy(A))))
— i (VA A
= lmit (5,-1 - (" * (yw - €7)))-

Observe that the existence of the above limit is guaranteed by Proposition (2.9)
and the fact that Clv"!BwB N U~] is an admissible T-module (being quotient of
Clu—)]). O

Finally we come to the proof of Theorem (2.2).

§(2.12) Proof of Theorem (2.2).
Write (cf. (4) of §2.1)
Yw = Z bwfl,ufl(su .

u<w
Then
e % (Y - €) = Z(*bwd’ml)e”)‘_“)‘
u
(1) = *bw—l,v—l + Z(*bw—l,u—l)@’)‘_UA.
uFv
u<w

For any (regular) weight A\, € D° |, v\, — u\, # 0 for u # v. From the definition of
by-1 41, it is easy to see that there exist positive roots {1, ..., 8¢} depending on
w (possibly with repetitions) such that

7\ ™ 1 — /T I
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where P := Hf;:l(l —e Pk,
Fix A\, € D°. Then the subset {nA,},>1 C D being cofinal in D under <,

limi v - by — limi nvi, w nio .
(3) ;\renil)t (" x (yw - 7)) nlglg (e * (Y - €"7°))

Then by (1) of Definition (2.10) and (1), (2), (3) as above, we get

P limit (" * (y,, - €)) = limit (P(e™ * (y,, - €"2)))

rxeD n—00
T n(vio—udo)
= }Llinég (P bwflﬂjfl + Z(P* bw—l’u71>€ )
uFv
u<w
_ s n(vAo—u,)
= Px bw717v71 + Z(P* bwfl’ufl) }}I_I)lég (6 )
uFv
u<w
=Px bw717v71 .
So, we get (in the Q(7')-module é?f))
(4) 1 @ limit (€ * (yy - €)) = *by-1 41 .

xeD

So, by Corollary (2.11) and Identity (4), we get
chrClo "BwBNU ™| = §,-1 « (#by-1,4-1).

But the variety v~'BwB N U~ provides an affine neighborhood of the point ¢ €
v~ 1 X,. In particular,

gr O, p-1x, 2egrClov " BwBNU].

The theorem now follows from the complete reducibility of the T-module C[v~! BwBN
U~], by translating the variety v=1X,, under v. [

(2.13) Remarks. (1) This theorem was obtained by the author in 1987 and pri-
vately circulated in the preprint “ A connection of equivariant K-theory with the
singularity of Schubert varieties”.

(2) A different proof of the Theorem was subsequently given by Bressler [Br].
Even though I have not seen, M. Brion mentioned to me that he also obtained a
proof of this theorem (unpublished).

3. Some consequences of Theorem (2.2)

After the following definitions, we give some of the corollaries of Theorem (2.2).

(3.1) Definitions. (a) For any ¢ € Z* := {0,1,2,...} and any a = Y_nye* €
R(T), denote by (a); = Zm\%f c SY(h*) , where S*(h*) is the space of homoge-

I T D A Y / T ™ 1 1. 4 1 I /7 \ I /) o 41



10 SHRAWAN KUMAR

smallest element of Z* such that (a)y, # 0. (If a itself is 0, we define [a] = 0.) Now

for g = ¢ € Q(T'), where a,b € R(T), we define [¢] = [a € Q(h) (the quotient field

of the symmetric algebra S(h*)). Clearly [¢] is well deﬁned

When ¢ # 0 and deg [a] < deg [b], we say that ¢ has a pole (at the identity e)
of order = deg [b]— deg [a]. It is easy to see that b,-1 ,-1 (cf. (4) of §2.1), when
non-zero, has a pole of order < ¢(w).

(b) The nil Hecke ring Qw ([KK1, §4]): Let Qw be the smash product of the
W-field Q(h) with the group algebra Z[W], with the product given by the same
formula (1) in §2.1. For any simple reflection r;, 1 < i < n, define z,, € Qw
by z,, = —(6,, + 56)0%. Now, for any w € W, define z,, = z;, ...z, , where
w =714, ...7;, is a reduced decomposition. The element z,, is well defined by [KK1,
Proposition 4.2]. Write, as in [KK1, Proposition 4.3],

Ty = ch—l’v—l dy, for some (unique)c,,—1,-1 € Q(h).

v

(3.2) Corollaries (of Theorem 2.2). For any v,w € W:

(@) by-1,-1 # 0 if and only if v < w; and in this case it has a pole of order
exactly equal to ¢(w). Further,

(1) ( 1T (1—66))%1,,)1 € R(T).

BeA,
(b) [#¥by-1 4y-1] = €1 4-1; and hence for any v < w,
[ch (97O )] = Cut et
as elements of Q(h).

In particular, ¢y # 0 if and only if v < w.
Further

(2) ( I Bcww € SH7).

JEISPANS

Proof. As observed in §2.1(d), by, = 0 unless v < w. So let us assume that v < w.
Set A" =vU e C G/B . Since A’ N X,, is a closed subvariety of the affine space
A, Toré’:[ AU](C[.A” N Xy, C) is a finite dimensional vector space over C for any p

and moreover (A" being smooth) is 0 for large enough p. Set

F = Z )Pch(Tor5H(C[AY N X,,],C)) € R(T).

Then from the Koszul complex we get,

(3) ( H (1 —€"?))chC[A* N X,,] = F, as elements of R(T).
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It can be easily seen that the coefficient of €? in the left side of the above identity
is non-zero, in particular F' # 0. From (3) we obtain

1 ®ChC[AU ﬂXw] =F. H (1 _ ev6>—1

BeAy
(4) —F H (—e) H (1— )71, as elements of Cj(\/T)
YEALNVA BeEA L

—~—

From (4) it is clear that 1® ch C[A"NX,,] # 0 as an element of Q(T"). Moreover,
since AY N X, is an affine neighborhood of v in X,,, we get

(5) ch C[A" N X,,] =ch(gr Oy x,,)-

But then by (5) and Theorem (2.2), we get that b,-1 ,—1 # 0. The assertion that
by -1 ,-1 has a pole of order exactly equal to ¢(w) (whenever v < w) follows from
a lemma of Joseph [Jo, §2.3]. This proves the first part of Corollary (a). Assertion
(1) of part (a) follows immediately from (4) (and Theorem 2.2).

To prove part (b), in view of Theorem (2.2), we only need to show that

(6) [*bw—1’v—1] = Cy—1p-1:

By induction (on ¢(w)) we assume the validity of (6) for any w with {(w) < k
and any v € W and take w’ = wr; of length k + 1, where r; is a simple reflection
such that ¢(w’) > ¢(w). (The case w = e is obviously true.)

By Definition 2.1 (d),

Yw' = YwYr;

= () buw10-16) (8 + 6n,)( )

1—e

1 — eV

_ Z bw—1’v—1 + bw—1’riv—1 5.

This gives for any v € W,
bwfl’vfl + bwfl,rivfl

(7) bm‘w_lﬂ)_l = 1 — e—voi

Exactly the same way, using the definitions from §3.1(b), we obtain:

Cu—1,9=1 F Coy—1 =1

(8) Criw—1op-1 = .

By (7) and part (a) of the corollary we get:
[*bw717v71] + [*bwfl’rivfl]

[*b”w—17v—1] = oo

Hence by the induction hypothesis (using (8)), (6) follows for w’ = wr;. This
completes the proof of Corollaries (3.2). O

(3.3) Remarks. (1) The (b)-part of the above corollary is due to Rossmann [R,
§3.2]. In fact, this motivated our theorem (2.2).

(2) The assertions (1) and (2) as above can be derived purely algebraically (cf.
[KK2, Corollary 4.18 and Remark 4.17(b) ]).

The following lemma gives an expression for b, , (and ¢, ,) and can be easily

I B T Y T T Y £
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(3.4) Lemma. Fiz any v < w € W, and take a reduced decomposition w =

iy ...’I“Z‘p. Then

bw—l,v—l = Z((l — e_Tfllail)<1 — 6_751175220%2) e (1 — e_

Similarly
Cut -1 = (1) Y (e ) (rfirZas,) - (rl o riraq,) 7
where both the sums run over all those (ey,...,¢€,) € {0,1}P satisfying ri! ...

0

v. (The notation r; means the identity element.)

€1 €p .

Til ...T‘ip ozlp))_1.

€p __
ip
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4. Ring of functions on the tangent cone —
the graded algebra structure

§(4.1) For any A € D, the (finite dimensional) G-module V() admits a filtration
{Fp(A) }p>0 as follows:

Let {U,(u™},>0 be the standard filtration of the universal enveloping algebra
U(u™), where we recall that U,(u™) is the span of the monomials X; ...X,, for
X, €u” and m < p. Now set

Fp(A) =Up(u™) - ex,

where ey is any non-zero highest weight vector in V().

Fix A€ D,v<weW,60ecV(\* and a highest weight vector ey € V().
Recall the definition of the function ¢y from §2.4. we abbreviate (6 ® ey) by ¢’.
Thus ¢’ : U~ — C is the function

¥’(9) = (0, gex), forgeU.
By Lemma (2.4), ¢Y vanishes on v 'BwBNU~ < (0,v"1V,,(\)) = 0. Identify U~
with the affine space u™ under the exponential map. This gives rise to a gradation
on C[U~]. Now let ¢f be the d*! graded component of ¢ (for any d > 0), i.e.,
1
(¥ AX) =2
The following lemma follows immediately from (x), if we use the fact that for
any vector space V, its p'* symmetric power SP(V) is spanned by {vP},cv .

(4.2) Lemma. Fiz p > 1. Then for any 0 as above (i.e. (0,v71V,(\)) = 0),
09 =0 for all 0 < d < p if and only if (0,v"V,y(\) + Fp_1 (V) =0. O

For any p > 1 and any subvariety 0 € Y C A", let Z,(Y") denote the set of degree
p'® components of all those functions f in the ideal Z(Y) of Y C A", such that the
d*™™ homogeneous component fy of f is 0 for all d < p.

0, X% ey), for X eu.

As an immediate consequence of the above lemma, we get the following

(4.3) Corollary. For any p > 0 the map 0 @ ex — (px(0 ® ey)), induces a T-
equivariant injective map

v W, (A) + Fp(N)
U_lvw()\) + ]:p—l()\
where Cy C V() is the highest weight subspace, and F_1(\) is defined to be 0. [
It is easy to see that under the map SA# VA+p) — V(A) ® Cp(of §2.6), the
image 0y, (Fp(A + p)) C Fp(A) ® C,,. Moreover, by Lemma (2.7),
Oa (0" V(A + ) C o™ Wiy (V) @ C,.

In particular, & A, gives rise to a T-module map 6y, (v, w; p) making the following
diagram commutative (for any \,u € D, v <w € W and p > 0):

(v—lvw<A>+fp<A) ) C, Slop) (v‘1Vw<A+u>+fp<A+u) )*m
vV (A + Fpa (V) ’ vV A+ 1) + Fprr A+ 1) o

- Folvwin)
] ®@Cy" = I,(vBwBNU"),

fp(U,UHA)\ L/fp(vvw;)"i_:u)

-~ /7 —17T 1 ~ 77—\
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By the injectivity of the map f,(v, w; X), we see that dx ,(v, w;p) is injective. Thus
(Dm0 Y )
vV (A) + -7:19—10‘) \ED
forms a directed system of T-modules and there is an induced T-module map
v W, (N) + Fp(N)
(L’_lvw()Q + Fp—1(A

(4.4) Theorem. The above map f,(v,w) is a T-equivariant isomorphism for all
p>0and allv <w € W. In particular, there is a T-equivariant isomorphism

0 gy ([SEEAT o)

where gry (O, ,-1x,) is the p™ graded component of gr{(O, ,-1x,,).

fp(v,w) : limit_, )] ® CA) — Z,(v'BwBNU™).

xeD

Proof. Since f,(v,w;\) is injective for all A € D, f,(v,w) is clearly injective. The
surjectivity of f,(v,w) follows from Lemma (2.4) and Lemma (4.2).

We now come to the proof of (1): Observe first that by [Ha, Lecture 20],
) 81y (Oc 1x,) = (7)) /T, (v BuB N U™),
where SP is the p*" symmetric power.
Now for any (fixed) p, if we take A to be sufficiently large, then the map
Up(u™) ® Cx — Fp(A) given by X ®@ ey — Xey,
for ey € Cyx C V(A), is a T-module isomorphism. In particular, by the Poincare-
Birkhoff-Witt theorem,

(3) Fp(N)/Fp—1(A) = SP(u”) ® Cy (for large enough ).
Consider the exact sequence
0 U V)N F() Fo(N) VW FN

%
vV, (M) NFpm1(A) 0 Fpmi(A) vV, (A) + Fpmi(N)
Dualizing this sequence and using (3) we get (for large enough \)

vV, ()N FN) . vV, () + F() !
0 (v—lvw()\)ﬂ}"p_l(A)) S = 57T & (v—lvw(A)+}"p_1()\)) WEr 0.

Now the isomorphism (1) is established from (2) and the isomorphism f,(v,w). O

§(4.5) For any variety X and a closed point z € X, let Z,(X) denote the Zariski
tangent space of X at x. For any subvariety Y C /B containing the base point
e, we get the induced inclusion Z.(Y) — Z.(G/B). But Z.(G/B) can be canoni-
cally identified with u™ (since U~ is an open neighborhood around ¢ in G/B), in

particular, Z,(Y) can be canonically viewed as a subspace of u™. For any o € A,
let 7o, € W be the reflection defined by 7,(A) = X — (A, a¥)a.

The following result is due to Polo [P, Theorem 3.2]. It may be recalled that
a different description of the Zariski tangent space in the case of classical groups
was given by Lakshmibai-Seshadri (cf. [LS] [L]). Observe that by virtue of the
automorphism of G/B, given by gB — vgB (for g € G), Z.(v™!1X,,) is isomorphic
with Zy(Xyw)-

The first part of the following result follows immediately from Theorem (4.4)
and the second part follows from the fact that X,, C G/B is defined by linear

P B
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(4.6) Corollary. For any v < w,
(1) Z.(v'X,) = {X €eu : Xey € v Vy(N), for all X € D}.
In fact,

(2) Z.(v1X,)={X cu : Xex, €v Vi (No)}, for any one regular \g € D,

where ey is a non-zero highest weight vector of V(A).

Proof. The identity (1) follows from Theorem (4.4) immediately, since Z,(v"1X,,) =
gri(O, »-1x, )" However, we give the following direct proof:

Fix A € D and take € (V(A\)/v=V,()\))*, and consider the corresponding
function ¢’ : U~ — C defined by

©?(exp X) = (,exp Xey) = (0, Xey) + order two and higher terms.

(Observe that (,e)) = 0 by assumption.) So the linear part L(¢?) € (u™)* (under
the identification exp :u™ — U~) of ¢’ is given by

(3) L(¢?)X = (6, Xey), for X cu.

Let Z(v"*BwB NU™) denote the ideal of the closed subvariety v"*BwB N U~
of U~. Then, by the definition of the Zariski tangent space,

Z.(v ' Xy,)={Xecu :L(f)X =0, forall f € Z(v 'BwBNU™)},
={X cu : Xey €cv 'V,()), for all A € D}, by (3) and Lemma (2.4).

This proves (1).

We now prove (2): The tensor product of sections gives rise to an algebra struc-
ture on the space R := @®,,>0H°(G/B, £(mX,)). Let K,, be the kernel of the
restriction map H°(G/B, £(m)\,)) — H°(Xu, £(mX,)|x,). Then by a result of
Ramanathan [Ra2, Theorem 3.11], the kernel K := ) ., K,, of the surjective
map @ >0H(G/B, £(mA,)) = Bm>0H®(Xw, £(mA,)|x,, ) is generated as an ideal
in the ring R ) by K; (i.e. X,, is linearly defined in G/B with respect to £(\,)).
This, in particular, implies (by translating via ! and using Lemma 2.3) that the
ideal Z(v"'BwB N U™) is generated by the functions {} where # ranges over
(V(Xo)/v™ Vi (X))*. Now by an argument identical to the proof of (1), we get
(2). O

(4.7) Lemma. Let g be simply-laced. Assume that there exist integersp, p1,...,Dk >
1 and roots 8, B4, ..., Bk € Ay such that

k
(1) pB=> ;B
j=1

and
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Then B85 =0, forall1 < j <k.

Proof. We can assume without loss of generality that no 55 = 5. Now by (1) we
get

k
(3) p(B,8Y) = p;(Bi.BY).
j=1
But g being simply-laced, (87, 3") < 1 (since 87 # ), and hence by (2) and (3)
we get
k
2p<> p <p.
j=1

This contradiction proves the lemma. [

(4.8) Definition. For any v < w € W, define S(w,v) = {a € Ay : vry, < w}.
Then as is easy to see #S5(w,v) = #S(w=t,v™1).

(4.9) Proposition. Let g be simply-laced. Fiz v < w € W. Then for any
a € Ay such that o ¢ S(w,v) but E_, € Z.(v™1X,), there exists a non-zero
element 0, € gri(O,,-1x,) of weight o satisfying Qép’av> = 0 as an element of
97p,avy (O v-1x,,), where E_ is a non-zero root vector of g corresponding to the
negative root —a, and p is the half sum of positive roots. In particular, the tangent
cone T, (v™1X,,) is non-reduced in this case.

Proof. By Lemma (4.7), the weight space of U,(u™) corresponding to the weight
—pa (for any p > 1) is one dimensional, and is spanned by E” . Since gri1(O,y)
is canonically isomorphic with the dual space Z; (for any variety Y and y € Y),
and E_, € Z, ,-1x,,, there exist a non-zero element 0, € gri(O, ,-1x,) of weight
a. Under the embedding Z, ,-1x, < u~ (cf. §4.5), we can identify the element 6,
with the element of (u™)* defined by 0,(E_g) = a5, for all § € A,

By virtue of Theorem (4.4), to prove that 62 = 0 (where p := (p, a")), it suffices
to show that (for all large enough A\ € D)

'Y
Xl
(vT Ve (M)NFp (X))

0:

Since 07 is of weight par and the weight space of U, (u™) corresponding to the weight
—pa is spanned by E? it suffices to show that E* ey ¢ v~ 1V, ()\) (for all large
enough A € D):

For otherwise, assume that E” ey, € v71V,,()\g) (for some p < A\g). Then by
Lemma (2.7), E? je, € v™'V,(p). But since 7ne, = E” e, (up to a non-zero
scalar multiple), 7oe, € vV, (p) and hence by [BGG, Theorem 2.9] vr, < w,
which contradicts the assumption and proves the proposition. [

'l

(4.10) Remark. The ‘in particular’ statement of the above Proposition can also be
deduced from [C, Theorem G(2)].

For a closed point x of a scheme X, recall the definition of the tangent cone
T,(X) as Spec (gr O,) from §2.1. Define the reduced tangent cone T7*(X) as
Spec (gr'ed0,), where gr'*d0, = (gr O,)/N and N is the ideal consisting of all the
nilpotent elements in gr O,.

The following result is due to Carrell-Peterson [C, Theorem EG], proved by

1*(rC_. 7 41 1.
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(4.11) Corollary. Let g be an arbitrary semisimple Lie algebra and fix v < w €
W. Assume that T'*4(0-1X,,) is an affine space for allv < § < w. Then the point
v € X, is rationally smooth.

Conversely, in the case when g is simply-laced, if the point v € X, is rationally
smooth, then Tered(H_le) is an affine space for all v < 0 < w.

Proof. As follows from [C, Theorem F| (cf. also [P, Proposition 4.2]), for any
a € S(w,0), E_, € Z(07'X,,) = gr1(O, g-1x,)*. Choose a non-zero element 6,
of weight a in gri(O, g-1x, ). Then 68 # 0 in gr,(O, p-1x,,) (for any p > 1): To
prove this, it suffices to show that E” jey € 671V, (\), for any A € D such that
p < (A, av) (cf. proof of Proposition 4.9):

By the sl(2)-theory, E<_>‘O’éav>e>\ = 7nex (up to non-zero scalar multiples). If
Oa € A_, clearly E? ey € 071V, ()\). So assume that o € A,. Then (upto
non-zero scalar multiples)

M) =P ey € 071V, (M)

E? e = EQ )P EC ey — ES
thereby proving the claim.

We come to the proof of the first part of the Corollary. Since the dimension
of the tangent cone is the same as the local dimension of the variety at that
point (cf. [Ha, Lecture 20]), and (by assumption) Tr4(§~1X,,) is an affine space,
dimTr4(=1X,,) = f(w) > #S(w,d). But, by Deodhar’s conjecture (see The-
orem 5.1), {(w) < #S(w,0). Hence f(w) = #S(w,6), for all v < 6 < w. So
the first part of the Corollary follows from [C, Theorem E]. (Observe that for any
e W, #{ae Ay 1,0 <0} =10).)

In the simply-laced case, by Proposition (4.9) and the above argument,

(1) dim(gri*!(Oc0-1x,,)) = #5(w, 0) = L(w),

since v € X, is assumed to be rationally smooth. But since gr*® is generated
(as an algebra ) by gri®d, we get a surjective map v : S(gri*d(O,9-1x,)) —
gr®d (0, g-1x,) (where S is the symmetric algebra). But since Tr*4(07'X,,) is
of dim ¢(w), surjectivity of v and (1) force v to be an isomorphism. This proves

the corollary. [J

red

(4.12) Remark. The converse statement of the above corollary is not true in general
for non simply- laced g. Take, e.g., g to be of type C5 or G5 and w = r17ro71, v = €.
Since g is of rank 2, (as is well known; and can also be proved by using Lemma 6.2
and Theorem 5.5 (a)) ¢ € X,, is rationally smooth. But it can be easily seen that
Tred(X,,) is not an affine space.

5. Smoothness criterion of Schubert varieties

For any v < w € W, recall the definition of S(w,v) from Definition (4.8). We
recall the following very interesting conjecture of Deodhar [D], which was proved
by Carrell-Peterson [C], Dyer [Dy], and Polo [P].

(5.1) Theorem. For anyv <w e W, #S(w,v) > {(w).

Even though the following proposition follows immediately by combining our
Corollary 3.2(b) with [Dy, Proposition §3], we give a different (geometric) proof (as

VR Y L & T, T Y Y o e nh T - - 2 T Y
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(5.2) Proposition. Let v <w e W. Then

#S(w™ v = l(w) & [ch(grOy x,)] = d(-1)" ™~ T g7,
peS(w—1v-1)

for some d € C.

Proof. By Corollary 3.2 (b), [ch (gr Oy x,, )] = cy-1 -1 # 0 and, moreover, it can
be easily seen from the definition of ¢,-1,-1 that deg c,-1,-1 = —f(w), where
degg := deg P — deg @) for non-zero P, € S(h*). Hence the implication ‘<=’ of
the above proposition follows.

Now we come to the implication ‘=-":

Let exp : u”=U~ be the exponential map, where u~ is the Lie algebra of
U~. (Observe that U~ being a unipotent group, exp is an algebraic morphism.)
Let Y := exp~ (U env~!tX,) be the closed irreducible subvariety of u~, where
we identify U~ with U e. Fix non-zero root vectors E_g (corresponding to the
negative root —f) for B € Ay. For any o € A, let f, : u= — C be the linear map
defined by ZB€A+ tsE_p + to, and let fY be the restriction of f, to Y. Define

the subvariety (with the reduced structure)
Zs={xecY:fX(x)=0, forall a € S := S(w,v)}.

Clearly 0 € Zg. We claim that any irreducible component Zg of Zg through 0 is
0-dimensional:

The varieties Zg C Zg are clearly T-stable under the adjoint action of the
maximal torus 7" on u™. Further, Zg does not contain any 1-dimensional T-stable
closed irreducible subvariety R: It is easy to see that any 1-dimensional T-stable
closed irreducible subvariety of u™ is of the form CE_g C u™, for some g € A. In
particular, R = CE_g, (for some 5y € Ay). This gives that exp(CE_,3,)0 C X,.
Now if —vfy € A4, then by [BGG, Corollary 2.3] vrg, < v < w, so fy € S. If vy €
AL, then clearly exp(CE,g,) exp(CE_,3,)v C X,,. In particular, for the subgroup
Svrﬁov—l C G generated by exp(CE_,3,) and exp(CE,g,), SUTBOU—lu C Xy. Again
this gives, by [C, Theorem F(2)], that 5y € S. So, in either case, R = CE_g,,
for some By € S. But, by the definition of Zg, such a R is not contained in Zg.
This contradiction establishes the claim that Zg does not contain any 1-dimensional
T-stable closed irreducible subvariety.

Embed i : u= — G/B via the map X — (exp X)e. The map i is clearly T-
equivariant open immersion. Take the Zariski closure Z2 of i(Z2) in G/B. Now
applying [C, Lemma of §2 | to the T-stable projective variety Z2 C G/B, we get
that dim Zg = 0 (since ZZ does not contain any I1-dimensional T-stable closed
irreducible subvarieties). Since any irreducible component of Zg is T-stable (and
closed) in u~ and any closed T-stable subset of u~ contains 0, we get that any
irreducible component of Zg passes through 0. In particular, Zg = {0}.

Since the variety X, is Cohen-Macaulay (cf. [Ra ], [Ku, Theorem 2.23], [Mal),
the variety Y is Cohen-Macaulay. Assume now that #S(w=t,v™1) = #S(w,v) =
l(w) = dim Y, and enumerate the elements of S(w,v) as {v1,...,7¢}, where
¢ = l(w). By [F, Lemma(a), §2.4] (since dim Zg = 0), the elements {f%}lgjgg

considered as elements of the local ring Oy y form a regular sequence in Qg y. Let
Tt 41 - *J1- 1 @ 1T1..0rY LR YT T R B o 1 g ) Y T . A R
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an integer d > 0 such that m?¢ C I C m, where m C Oy is the maximal ideal (since
Zg = {0}). Moreover, by [F, Lemma (b), §2.4], the canonical ring homomorphism

007Y ~ m /Tm—+1
(1) i (X1, Xo, ., X =5 > I

m>0

which takes X; to the image of f% in /I, is an isomorphism. In particular,
ch (gr (O, v-1x,)) =ch(gr(Ooy)) = ch(C[Y]) (Y being affine)

L
(2) =ch (OO,Y/I) H(1 — )7 by (1).

But since Qg y /I corresponds to the O-dimensional variety, it is finite dimensional
vector space over C and hence

(3) [ch (Op,y /I)] = dim (Op v /I).

4
(4) [ch (gr (Oc,v-1x,))] = (—1)£dH7j_1,

where d := dim(QOq y /I). Thus

£
[ch (gr (O, x,,))] = (—1)8 d H(vq/j)_l
= (=1 d(—1)*lvrea-} H g1
BeS(w—1w—1)

(5) RO | B

peS(w=tvt)
This proves the proposition. [

(5.3) Remark. When the equivalent condition as in the above Proposition (5.2) is
satisfied, d in fact is an integer > 0 (as is clear from the above proof).

We recall the definition of a rationally smooth point in a variety Y (cf.[KL,
Appendix]).

(5.4) Definition. A variety Y of dimd is said to be rationally smooth if for all
y €Y, the singular cohomology H'(Y,Y\y,Q) = 0 if i # 2d and H?¥(Y,Y\y, Q) is
one-dimensional. A point yy € Y is said to be rationally smooth if there exists an
open (in the Zariski topology) rationally smooth neighborhood of yy € Y.

A smooth point yg € Y is clearly rationally smooth.

ml. _ 71\ 4 Cs1l . CoT11 41 e Y e YL
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(5.5) Theorem. Fizv<weW.
(a) The point v € X,, is rationally smooth <
For all v < 0 < w, we have

(1> Cuw—1,-1 = de(_]_)@(w)—é(e) H 6—1’

peS(w=1,0-1)

for some constants dg € C.
(b) The point v € X, is smooth <

(2) Cop—1,9-1 = (_1)f(w)—é(v) H 51,

peS(w=tv=1)

Proof. (a) By [C, Theorem E|, v € X, is rationally smooth if and only if for all
v <0 <w, #S(wt 07! = ¢(w). By Proposition (5.2), this is equivalent to the
requirement that for all v < 0 < w,

ch(gr(Osx,) = do ()= T 57,
BeS(w=1,0-1)
for some dg € C. Now the (a)-part follows from Corollary 3.2(b).

(b) The point v € X, is smooth if and only if the graded algebra gr(O, x,,)
is isomorphic with the symmetric algebra S[gri(Oy x,)]. We first prove the ‘="’
implication: So assume that v € X, is smooth. Then

ch (gr (Ovx,)) = ch (S[gr1 (0o x,))) = [J(1 =),

veS

if ch (gr1(Ov,x,,)) = >_es€”- It is easy to see that S C vA, and moreover all the
weight spaces of gri (O, x,, ) are one-dimensional. In particular,

(3) Co-1-1 = [ch(gr (Oox, )= [ (07"

’YESC’UA+

But since v € X, is smooth, in particular, it is rationally smooth. So by the
(a)-part of the theorem,

(4) Cy1,pr = (=) q, T B,

peS(w=tvt)

for some positive integer d, (see Remark 5.6(2)).
Equating (3) and (4), we get

(5) d [[v=+ ]I &

YES BeS(w—1v-1)

Let @ C b* be the root lattice and let @, := F, ® Q be the reduction mod p (for
Z

L T L a R T o T T e T Y o D o T T R e
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(5) mod p (for any prime divisor p of d,) and observing that no root mod p is 0 in
Qp, we get that d, = 1. This proves the implication ‘=’ of the (b)-part.

Conversely, assume that c,,-1 ,-1 = (—1)4w)=e) HﬁeS(wfl,vfl) 1. By Corol-
lary 3.2 (b), this gives

(6) [ch (gr (O x,))] = (—1)f =TT g~
BeS(w—1,v=1)

By (5) of the proof of Proposition (5.2), we get that

(7) [ch (gr (Oy x,,))] = (=1)") ) g I 5"

peS(w=1v=1)

where d = dim (Og y /I) (the notation is as in the proof of Proposition 5.2).

By comparing (6) and (7), we get that d = 1, i.e., I is the maximal ideal of Op y .
In particular, by (1) of the proof of Proposition (5.2), gr(Qy,y) is graded isomorphic
with the polynomial ring C[X1, ..., X¢]. So we get that the point 0 € Y is smooth,
and hence the point v € X, is smooth. This proves the theorem completely. [

(5.6) Remarks. (1) The (a) part of the above theorem can also be proved im-
mediately by combining a result of Dyer [Dy, Proposition §3 | with a result of
Carrell-Peterson [C, Theorem EJ, i.e., we can avoid the use of Corollary 3.2(b).
But our proof has the advantage that a similar argument (as seen above) gives our
criterion for smoothness as in the (b)-part of the above theorem.

(2) In the case (a) as above (i.e. if v € X,, is rationally smooth), the constants dy
are in fact positive integers for any v < § < w (cf. Remark 5.3).

(3) There are some examples of v € X,, (where X, is even a codimension one
Schubert variety in G//B) such that c,-1,-1 satisfies condition (1) of the above
theorem, but v is not a rationally smooth point of X,, (cf. Remark 7.9(a)). In
particular, to check the rational smoothness of a point v € X,,, it is not sufficient
(in general) to check the validity of condition (1) only for § = v.

(4) Tt is a result of V. V. Deodhar [D] that any rationally smooth Schubert variety
is in fact smooth for G = SL(n). This result has recently been extended for any
simply-laced G by D. Peterson. As is well known, this result is false in general for
non simply-laced G.

6. Singular locus of Schubert varieties in rank-2 groups

As an immediate corollary of Theorem (5.5), we obtain the following result de-
termining the singular locus of all the Schubert varieties in the case of any rank
two group. I believe it should be well known, but I did not find it explicitly written
down in the literature. We follow the indexing convention as in Bourbaki [B].

(6.1) Proposition. The following is a complete description of the singular locus
of the Schubert varieties in the case of rank two groups:

Case 1. G of type Ao : In this case all the siz Schubert varieties are smooth.
Case II. G of type Cy : There are, in all, eight Schubert varieties. Out of these
only X, r,r, 15 singular and it has singular locus = X, .

Case I1II. G of type Gy : There are, in all, twelve Schubert varieties. Following is

1h o rnvvrmlote Inet AF coonmnilan Amooe A oo cnm antloor TAaca -
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Singular locus

(1) Xriron - Xy

(2)  Xriroryrs Xriry
(3)  Xraryrar Xrar
(4)  Xriroriram Xoirary
(5)  Xrorirorirs X,

Proof. As is well known, for any rank-2 group G, any v € X, is rationally smooth.
(This can also be obtained from Theorem 5.5(a) and the following Lemma 6.2.) In
particular, c,,-1,-1 satisfies identity (1) of Theorem (5.5). Now the proposition
follows immediately by combining Theorem (5.5)(b) and the following lemma. [

The following lemma can be easily proved by a straightforward calculation using
the definition of the elements z,, in the nil Hecke ring Qw (cf. Definition 3.1(b)).

(6.2) Lemma. For any group G and any simple reflections r1,79 € W, we have
the following (as elements of Qw ):

1 1 1 1 1
(&) Ty Tp, = — <_5e — —0p, — Ory + 5r1r2)
a1 \ (2 (D) r109 r1¢e

(b)  @p ryay, =

1 [ as(ay) 1 1
- - N 66 - 57"1 + - N 57"2 - 57"2 T1 -
oy (az(ﬁaz) ) ag(raan) ( ) (rice)(rirqon)

(67”17”2 - 57”17"27"1 ))

(¢) Tp TpyTp Tpy =

1 (m—1) (m—1)
- 5@ - 61“2 - 61“1 - 6r1r2 +
aq (az(ﬁaz)(rzal)( ) az(rlaz)(rlrzal)( )
1 1
57‘27"1 _57"21”11”2 - 61”11”21”1 _61”17‘27‘17"2
062(7’2041)(7’27‘1062)( ) (7”1042)(7‘17’2061)(7’17‘27‘1042)( ))

(d) 2y Tpy Ty Tpy Ty =

1 (m—1)(2—m) (2 —m)az(ay)

a1 (Oéz(r1062)(7”2061)(7‘17”2041) <6€ 042(7’2061)(7‘1062)(7“27’1042)
(m — 2)az(ay) 1

1) —0 +
az(ﬁozz)(Tlrzal)(mrzﬁaz)(”” rirar) az(reaq)(rerias)(rarirea;

- 57“1) +

(67”2 - 57"27"1 )+

(6T2T1T2 _6T2T1T2T1)
)

1
- )(57”17”27”17”2 - 67”17”27”17”27”1)) )

(rice)(rirgay)(rirerias)(rirerireon

where m := a3 (a3 )z (ay).

7. Singularity of codimension one Schubert varieties in G/B

Let w, be the longest element of the Weyl group W (of G). As is well known,

VR L T e U T Y L Y D o Y i o L Y L T T, v
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where w = w,r; for a simple reflection r;. In particular, the number of such
Schubert varieties in G/B is equal to n := rank G. We denote the Schubert variety
Xuw,r; (1 <i<n)by X;. Let x; € b3 be the i'"(1 < i < n) fundamental weight,
defined by x;(aj) = d; ;.

(7.1) Proposition. Fiz any 1 <i <n. Then for any v € W such that v < w,r;,

(1> CTHUO,’U71 = [ch(gr OUJQ)] = (_1>|A+_Z(U)ﬁ(wo)(i - UXi):

JEISPANS

where [ ] is as in § 3.1(a).

Proof. Consider the i** fundamental representation V (;) (with highest weight ;)
and define the function
w=g;ip:u = Chy p(X)=(expX - eXi,z_)_ler()Xi), for X eu;

where © is a representative of v in N(T'), e,, (resp. €w,y,;) IS @ non-zero vector in
V(xi) of weight x; (resp. wox;) and ey, . € V(x:)* is defined by e}, . (€w,y,) =1
and ey, . (v,), for any weight vector v, € V(x;) of weight 1 # wox;. Let Y be the
closed subvariety of the affine space u™ defined as Y = exp (U eNv™1X;) (cf.
proof of Proposition 5.2). It is easy to see that Y C u~ is defined set-theoretically
by the vanishing of the function ¢ : u= — C (use Lemma 7.2). Moreover ¢ is
obtained by restricting the section x(v7'e}, .,) € H°(G/B,£(x;)) to U~ e (and
using the identification exp: u= — U~e¢ C G/B ), where x is the Borel-Weil
homomorphism (cf. Proof of Lemma 2.4). But the line bundle £(x;) on G/B
corresponds to the irreducible divisor X; C G/B with multiplicity 1 (use, e.g., the
Chern class calculation for the line bundle £(y;) ). This, in particular, implies that
the ideal I of the irreducible hypersurface Y C u~ (with the reduced structure)
is generated by the function ¢ (cf. also [C2, Proposition 4.6]. This gives that (as

graded T-algebras),

*

(2) 8r (Ocv-1x,) = S ) /([¢)),

where (as earlier) S(u~") is the symmetric algebra of u~ and ([¢]) denotes the
(homogeneous) ideal generated by the least degree non-zero homogeneous compo-
nent [¢] of ¢. From the definition of ¢, it is easy to see that [¢] is a weight vector
for the adjoint action of T' on u™ with weight y; — v~"lwgx;. So by (2),

ch (gr O, -1x,) = (L — X~ woxi) T (1—¢)7Y,
BeAL

and hence

ch (o1 i __1\#Ay (v rwoxs — Xi)
(3) [ch (gr Oc y-1x,)] = (—1) T
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(Observe that by Lemma (7.2), v~ twox; — x; # 0, since by assumption v < wqr;.)
By applying v to (3) we get

o (e 0y, x,)] = (1)) (00 =),

BeAL

This proves the second equality of (1). First equality of (1) of course follows from
Corollary 3.2(b). O

(7.2) Lemma. For any simple reflection r; and any v € W, v < w,r; if and only
if Xi # v wox-

Proof. Let Z C G be the zero set of the function ¢ : G — C given by ¢(g) =
(gexis €moxs) (Where ey, and ey, | are as in the proof of Proposition 7.1). Then
clearly Z is B-stable under the left as well as right multiplication. In particular,
Z/B = UXj, where j runs over some subset S C {1,...,n}. Clearly i € S, whereas
for j #14, j ¢ S, and hence Z/B = X;. Hence v < wgr; & v € X; =7 & vy, #
Wo X - O

(7.3) Lemma. Assume that v < wor;. Then x; — v~ wox; is multiple of a root 3
if and only if vB ¢ S(rywe,v™1). In particular, x; — v~ wox; is multiple of a oot
if and only if #S(r;we,v™1) = N — 1, where N := #A .
Proof. 1f +v3 ¢ S(rjwo,v™1t), then by the above Lemma (7.2), rgvtwox; = x;-
In particular, x; — v~ twoy; is a multiple of /3.

Conversely, assume that

(1) Xi — v twoxi = nf,

for some number n and § € A . By Lemma (7.2), n # 0. To prove that +v3 ¢
S(rywo,v™1), it suffices to show (again by Lemma 7.2) that rgv~twox; = xi: By

(1),

(2) (xi — v twoxs, BY) = 2n, and
2
n(B, )

Combining (2) and (3) we get (—v"lwoy;, 8Y) = n; and hence rgv~twoy; =
v rwoxs — (v Mwoxa, BY)B = v woxi + 1B = xi (by (1))

The ‘in particular’ statement of the lemma follows from Deodhar’s conjecture
(cf. Theorem 5.1). O

(xi + v woxi, xi — v twox:) = 0.

(3) (xi + v twoxi, BY) =

By virtue of Proposition (7.1), Lemma (7.3), and Theorem 5.5(b), we get the
following characterization of the smooth points in the Schubert varieties X;.

(7.4) Proposition. Let X; (1 < i < n) be a codimension one Schubert variety.
Then, for any v < w,r; € W, the following are equivalent:
(a1) v € X; is smooth.
(a2)  Cpyw, -1 = (—1)N_1_£(”)m, for some positive roots {f1,- -, BN-1}
(where N = dim G/B).

/7 0\ 1 Sy
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In particular, X; is smooth if and only if x; — wox; s a root.

(7.5) Remark. If v € X; is smooth, then the set {£1,---,6n-1}, as in (az) above,
coincides with the set S(r;wp,v™!) (by Theorem 5.5 (b)).

Proof (of Proposition 7.4). As follows from Theorem 5.5(b), (a;)=>(az). The impli-
cation (ag)=-(ag) follows from Proposition (7.1). So we come to the proof of (ag) =

(a1):

By Theorem 5.5(b), we need to show that
1) Cranpt = (DYWL

BES(riwo,v—1)

By (ag), v := vx; — wox; is a root (and in fact is positive since v < wp). In
particular, by Proposition (7.1),
(2> Criwg,v—1 = (_1>N—1—£(v)$ .
H,3€A+ p

But by Lemma (7.3), S(r;wo, v™1) = A\ {7}, and hence (1) follows from (2). This
proves the implication (az) =(a1).

The ‘in particular’ statement of the proposition follows from the equivalence of
(a1) and (ag) since X; is smooth if and only if ¢ € X; is smooth. [

By the same proof as above for the implication (az)=-(a;) (alternatively, by using
Lemma (7.3) with [C, Theorem E]) we obtain the following:

(7.6) Corollary. With the notation as in Proposition (7.4), v € X; is rationally
smooth if and only if for all v < 0 < wor;, xi — 0 wox; s multiple of a Toot By
(depending upon 6). O

We follow the indexing convention of simple roots as in [B, Planche I-IX]. The
following lemma follows easily from the explicit knowledge of roots, coroots, fun-
damental weights etc. as given in loc. cit.

(7.7) Lemma. Let G be a simple algebraic group. Then for any fundamental
weight x;(1 <i<n),
(a) xi—woXi is a (positive) root precisely in the following cases (A, etc. denotes
the type of G):
(a1) A, (n>1) ; i=1,n
(@) Cp (n>2) + i=1

(b)  xi —wox; is multiple of a Toot but not a root itself, precisely in the following

cases:
B, (n>3) ; i=1.2

(b1)

(bs) C, (n>2) ; i=
(bs) Dp (n>4) ; i=
(b4) EG 3 1=
(bs) E7 ;oi=1
(bs) Es ;1=

As a consequence of the above lemma, we get the following complete list of
codimension-1 Schubert varieties which are smooth or rationally smooth.

xXxX7. _ 491 4L LY e Y. e Y 7Y e e
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(7.8) Proposition. (c) The following is a complete list of codimension one Schu-
bert varieties X; which are smooth:

(c1) An (n>1) : i=1,n
(o) Cp, (n>2) : i=1.

(d) The following is a complete list of codimension one Schubert varieties X; which
are rationally smooth but not smooth:

(dl) 02 =2

(dg) G2 1= 1,2

(d3) B, (n>3):i=1.

Proof. The (c)-part follows immediately by combining Proposition (7.4) with Lemma
(7.7).

To prove the (d)-part, in view of Corollary (7.6) and Lemma (7.7), it suffices to
show that in all the cases covered by (b) of Lemma (7.7) but not in the list (d)
above, there exists a # € W such that y; — 0 'wgx; is not a multiple of any root
(by Lemma 7.2, such a 6 will automatically satisfy 8 < wgri), whereas in the cases
covered by (d), x; — 0 twgy; is indeed multiple of a root for any § € W:

We freely use the notation without explanation from [B; Planche I-IX]. In the
cases (Bp>3; @ = 2), (Cp>3; ¢ = 2) and (Dy>4; @ = 2) take any 6 € W satisfying
O(e1) = €1, O(e3) = €2. Then x; — 0~ twgy; is not a multiple of any root.

In the cases (Eg; ¢ = 2), (E7; i = 1), and (Es; i = 8), x; is the highest root ay.
In these cases take any 6 € W satisfying 6(as) = g (observe that —wpag = o and
the W-orbit W - aq consists of all the roots), then x; — 8 twgy; is not a multiple
of any root.

In the case (Fy; i = 1), (resp. Fy; i = 4), x1 (resp. x4) is the highest (resp. a
short) root, in particular, W-x; consists of all the long (resp. short) roots. Take any
0 € W satisfying 0(ez + €3) = x1 (resp. 6 (W) = x4), then x; — 071wy,
is not a multiple of any root.

For (Co; i = 2) and (Go; i = 1,2), it is easy to see that x; — 0~ lwgy; is multiple
of a root, for all 8 € W.

So finally we come to (Bp>3; ¢ = 1): In this case, —wo = Id., x1 = €1 (a short
root), and hence W - x1 = {#¢€; }1<i<n. In particular, x; — 0 lwpx; is multiple of
a root for all § € W. This finishes the proof of the (d)-part of the proposition. O

(7.9) Remarks. (a) In all the cases covered by Lemma 7.7(b) but not contained
in Proposition 7.8(d), identity (1) of Theorem 5.5(a) is satisfied for w = wqr; and
0 = e but is violated for some e < 6 < w (use Proposition 7.1, Lemma 7.3 and
Theorem 5.5(a)).

(b) I am informed that the (c) part of the above proposition, as well as the equiv-
alence of (a1) and (ag) in Proposition (7.4) for v = e was contained in an earlier
longer version of [C] (cf. [C2, §4]). Of course (di), (dz) are very well known, and
example (d3) was known to be rationally smooth due to Boe [Bo].

8. Extension of results to the Kac-Moody case

(8.1) Notation. We will follow the notation (often without explaining) from [Ku;
§1]: In partlcular throughout this section G G(A) denotes the complex Kac-

N 1 e Y Y ey N E Y o T Y L
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do not put symmetrizability restriction on A), with the standard Borel subgroup
B, and the standard maximal torus 7' C B. There is a Weyl group W ~ N(T')/T
associated to the pair (G,T) (where N(T) is the normalizer of T in G). The
Weyl group W is a Coxeter group with the simple reflections {r;}1<i<y as Coxeter
generators (r; is nothing but the reflection through the simple root «;). Hence, for
any w € W, we can talk of its length ¢(w) and also have Bruhat partial ordering <
in W.
The Kac-Moody algebra g = g(A) admits the root space decomposition:

g=he Y  (9.©0 a),
a€EAL Ch*

where g, ;== {X € g: [h, X] = a(h)X, for all h € b} is the a-th root space, b := Lie
T is the standard Cartan subalgebraof g, and Ay :={a#0€ > | Zia; : go # 0}
is the set of positive roots. We denote A_ = —A; and A := Ay UA_. The
Weyl group W preserves A. The set of real roots A™ C A is defined to be W.
{a1,...,a,} and the set of imaginary roots A™ := A\A™. We set A = Ay NA™
(resp. A™ = A_ N A™); A and A™ have similar meanings. We denote by A
(resp. A_) the indexed set of positive (resp. negative) roots such that each root
occurs exactly as many times as the dimension of the corresponding root space.
Recall that the real root spaces are of dimension one.

The group G (in particular the torus 7" ) acts on G/B by the left multiplication.
For any w € W, the Schubert variety X,, is by definition the closure of BwB/B in
G /B, where w is a preimage of w in N(T') and G/B is endowed with the Zariski
topology as in [S]. Of course, X,, is T-stable. As is well known (by the Bruhat
decomposition), X,, = U BuvB/B. In particular, for any v < w, v := 9B € X,

v<w
and it is a T-fixed point. We will always endow X, with the stable variety structure
as given in [Ku; §1]. With this structure X, is an irreducible projective variety of
dim £(w).
For any real root (3, there exists a unique additive one-parameter subgroup Upg
and a homomorphism ug : C — G satisfying ug(C) = U and such that

tus ()t~ = up(eP (1)2),
for any z € C, and t € T. Furthermore, for any w € W, ngﬁ)_l =Uyg.
Now let U~ be the subgroup of G generated by the one-parameter groups
{Us}peare. Then the map U~ — G/B, taking g — ge is injective and moreover

U~e¢ C G/B is an open subset.
For any A € b}, recall the definition of the line bundle £(\) :=GxC_, — G/B
B

from [Ku; §2.2]. For dominant A € b}, let V™**(\) be the maximal integrable
highest weight G-module with highest weight A (cf. [Ku, §1.5], where it is denoted
by L™**())). Define

H°(G/B,£(\)) = Inv limity,ew H (Xuw, LA, )-

The highest weight space Cy := V™% (X)) of V™®*()) is one dimensional. Define
the map
X =Xt V()T — HY(G/B, £()))
by X(f)(9B) = (g, (97 f)ICx) mod B, for f € V"**())*, and g € G.
The following result is due to Kumar [Ku, Theorem 2.16] (and also Mathieu

M r_ 1\
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(8.2) Theorem. The map x as above is an isomorphism. Moreover, for any
v<w €W, it induces an isomorphism

(v, w) s (0TTVERR(N) S H (0 X, £V,

v_lxw )7
making the following diagram commutative:

Vmax(}\)* L) HO(G/B,£<)\))

! !

(otymax(n))e 2200 pog-1x, e,

v_lxw)

where V'**(X) C V™*X(X) is the B-submodule generated by the extremal weight
space V¥ (X) pr) of weight wA, and the vertical maps are the canonical restriction
maps.

For any non-zero ey € Cy, define e} € V™*(\)* as e (ex) = 1 and e3(y) = 0, for
any weight-vector y of weight p # X\. Now define the section s., € H°(G/B, £()\))
by se, = xa(€})-

The following lemma follows immediately from the Birkhoff decomposition [KP,
§3].

(8.3) Lemma. The zero set of se,, Z(se,) = G/B\(U™¢), if A\ € D°, where (as in
§1) D° is the set of dominant reqular weights. O

The line bundle £()‘)\v—1x on the projective variety v='X,, is ample for any

v<w €W and X\ € D°. In particular, by Lemmas (2.3) and (8.3), U~ eNv~1X,
is an affine open subset of v™1X,,,.
Define the T-equivariant map (cf. §2.6)

ox(v,w) : (VTTVEE(A))* @ Cy — C[U eNv ' X,] by

(Pa(v, w)(f @ ex))(@)se, (2) = (xa (v, w) ) (),

for f € (vIVI(A))* ey #£0€Cyand x € U eNv 1 X,. (We set ¢y (v,w)(f®
0) = 0.) By Lemma (8.3), the map ¢, (v,w) is well defined, and is injective by
Theorem (8.2). Moreover, as in §2.7, for any A € D° and p € D, the following
diagram is commutative:

Ox,p(v,w) _ N
W VEEO) @ Cy Y (0 YR 4 1)) ® Cage
QD)\(U,U))\ \/SOA-HA(U?U))
ClU env X,

where the map dy ,(v,w) is defined as in Lemma (2.7). Taking the limit of the
maps @y (v, w), we get the T-equivariant map

o(v,w) : %}énDlE — (bR * @ Cy) — C[U env™ X,

m. _ <~ 11. * . ey~ 117 s T _ 0 AgyYyON _ 1T O O
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(8.4) Proposition. The above map p(v,w) is an isomorphism for any v < w €
w. O

Define the Lie subalgebra u™ = @ g, of g and (for any m > 0) the ideal u_,
aEA_

of u™ by
u;z == @QEAf Yo

la]>m

a=> ma, o] =Y mi|

The quotient algebra F,,(u™) :=u~ /u_ is a finite dimensional nilpotent algebra.
Let F,,(U~) be the associated unipotent complex algebraic group. Corresponding
to the Lie algebra homomorphism u~ — F),(u™), there is associated a group ho-
momorphism 6,, : U~ — F,,,(U~). We state the following simple lemma without
proof.

where for a root

(8.5) Lemma. Fiz v < w € W. Then there exists a positive number mq(v,w)
such that
Oy (v,0) : U eNv 1 Xy, — Fpn(U7)

(got by restricting the map 0,,) is a closed immersion for all m > mg (v, w).

By an argument identical to the proof of Theorem (2.2) (as given in §2.12), and
Corollaries (3.2) (using Proposition 8.4, Lemma 8.5, and [Ku, Theorem 3.4]) we
get the following analog of Theorem (2.2) and Corollaries (3.2) for an arbitrary
Kac-Moody group G.

(8.6) Theorem. Let G be an arbitrary Kac-Moody group.

(a) For anyv <w e W, gr Oy x, is an admissible T—module and moreover

ch ( gr Oy x,,) = *by-1 -1,

—~—

as elements of Q(T) .

(b) For any v <w € W, by—1,-1 # 0 if and only if v < w, and in this case it
has a pole of order exactly equal to ¢(w). Further, there exist B1,...,N €
AT (for some N > 0) such that

(ﬁ(l - eﬁj))bwl,vl € R(T).

j=1

(¢) [¥by-1 p—1] = Ccy—1 p—1; and hence for anyv < w, [ch(gr Oy x,, )] = Cw-1,p-1,
as elements of Q(h).
In particular, ¢y # 0 if and only if v <w. O

We extend Proposition (5.2) to the Kac-Moody case.

(8.7) Proposition. Let G be an arbitrary Kac-Moody group and let v < w € W.
Then

11,01 = L(w) & [ch(grOy x,)] = d(-1)@ =4 ] B,
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for some d € C; where S(w™',v™1) ={a € A : v lry, <w '}

Proof. The proof is very similar to the proof of Proposition (5.2). But we need to
make the following modifications:

Define Y = U~eNv~'X,,. Fix any regular A\ € D° and a highest weight vector
ex € V™**()) and consider the element e} € V™*(A)* as in §8.2. For any root
a € AT, choose a non-zero root vector X, € go and define the map 0, : U~ — C
by 0.(9) = e3(Xagey), for g € U™. We claim that 6,(g) # 0, for any g # e € U_,:

Write g = exp(zX_,), for some z # 0 € C ; where X_, is the root vector
corresponding to the (real) root —a such that [X,, X_,] = ¥ (cf. [K, exercise
5.1]). Then

Oa(g) = X (Xa exp(2X_q)en)

ex(zXaX_qen)
= ey (2[Xa, X—aler)
(A a¥)

z
0, since A is regular.

RN

Idetifying U~ ~ U~ e, we can (and do) consider 6, as a function on Y. Now define
Zs={x €Y :0,(x)=0, forall « € S := S(w,v)}.

Rest of the argument to prove the proposition is similar to the proof of Propo-
sition (5.2) provided we replace u~ by U~ and use the following simple

(8.8) Lemma. For anyv < w € W, one dimensional T-orbits in U~ eNv~1 X, are
precisely of the form (U_g\e)e, where 5 ranges over (positive real) roots € S(w,v).

Proof. By the Bruhat decomposition

Xo= UUbe= U OOUOINT e,
o0<w 0<w

one-dimensional T-orbits contained in v~'X,, are precisely of the form Ipg =
v719(U_p \ e)e, where § < w and 8 € AL NOTA_. (We are using the fact
that any root in A, NO~LA_ is a real root and moreover for any real root f3,
df is not a root for any d > 1.) If v = 6, clearly Iy 3 C U e, and moreover
BeALNv AL & e A and vrg < v (by [BGG, Corollary 2.3]). So assume
that v # 6. By Bruhat decomposition for SL(2), we get

(U_ge)U{rge} = BrgB/B C G/B,

where the closure is taken with respect to the (inductive limit) Zariski topology on
G/B. In particular, ) )
Iy g \ Ip g = {@_196, 17_197“752} ,

where 0 is a preimage of v in N (7). By Lemma (8.5), it is easy to see that any closed
T-stable subset of U~ ¢ (under the induced subspace topology on U~e¢ C G/B)
contains ¢. Hence (if v # 0)

T T . T N TT— . ——1nn =
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i.e. v = 6rg. Again by the Bruhat decomposition for SL(2), it is easy to see that
in this case (i.e. Org =v) v 10(U_g\ e)e = (U_g \ e)e.
But by [BGG, Corollary 2.3],

{BeAY:BeAin(rgv 'AL) and vrg <w} = {B € S(w,v) : v < vrgh.

This proves the lemma. [J

Now by an argument identical to the proof of Theorem (5.5), we obtain the
following.

(8.9) Theorem. Theorem (5.5) is true for an arbitrary Kac-Moody group. O

(8.10) Remarks. Even though we have taken the base field to be the field C of
complex numbers, all the results of the paper carry over (with the same proofs) to
an arbitrary algebraically closed field of char. 0.

Also, by a result of Polo [P, §4.1], the dimension of the Zariski tangent space
Zy(Xy) is independent of the char. of the field. In particular, a point v € X, is
smooth in char. 0 if and only if it is smooth in any char. p. So our smoothness
criterion (as in Theorem 5.5(b)) works in arbitrary char. p.
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