282 research outputs found

    Epitaxial growth of (FeCo)x Ge1-x (001)

    Get PDF
    The epitaxial growth of (FeCo)x Ge1-x films on Ge and GaAs (001) substrates has been studied systematically with x in the range between 0 and 17 at. %, using combinatorial molecular beam epitaxy (MBE) techniques. Complementary doping using the two transition metal dopants into Ge (001) during MBE growth is shown to produce high quality coherent epitaxial films for transition metal concentrations as high as 11 at. %. As the doping level increases, rough growth occurs, which is accompanied by an increasing amount of stacking faults along the 〈111〉 directions. The crystal lattice that resulted from the rough growth exhibits a large out-of-plane tetragonal distortion. There are no detectable secondary phases up to a combined transition metal concentration of 17 at. %. The behaviors are shown to be invariant with respect to the choice of substrates

    Revisiting the Bs()B^{(*)}_s-Meson Production at the Hadronic Colliders

    Full text link
    The production of heavy-flavored hadron at the hadronic colliders provides a challenging opportunity to test the validity of pQCD predictions. There are two mechanisms for the Bs()B^{(*)}_s hadroproduction, i.e. the gluon-gluon fusion mechanism via the subprocess g+gBs()+b+sˉg+g\rightarrow B^{(*)}_s+b+\bar{s} and the extrinsic heavy quark mechanism via the subprocesses g+bˉBs()+sˉg+\bar{b}\to B^{(*)}_s +\bar{s} and g+sBs()+bg+s\to B^{(*)}_s +b, both of which shall have sizable contributions in proper kinematic region. Different from the fixed-flavor-number scheme (FFNS) previously adopted in the literature, we study the Bs()B^{(*)}_s hadroproduction under the general-mass variable-flavor-number scheme (GM-VFNS), in which we can consistently deal with the double counting problem from the above two mechanisms. Properties for the Bs()B^{(*)}_s hadroproduction are discussed. To be useful reference, a comparative study of FFNS and GM-VFNS is presented. Both of which can provide reasonable estimations for the Bs()B^{(*)}_s hadroproduction. At the Tevatron, the difference between these two schemes is small, however such difference is obvious at the LHC. The forthcoming more precise data on LHC shall provide a good chance to check which scheme is more appropriate to deal with the Bs()B^{(*)}_s-meson production and to further study the heavy quark components in hadrons.Comment: 18 pages, 8 figures, 4 tables. To match the published version. To be published in Eur.Phys.J.

    Snappy App: a mobile continuous performance test with physical activity measurement for assessing Attention Deficit Hyperactivity Disorder

    Get PDF
    A Continuous Performance Test (CPT) was incorporated into a smartphone application (App) to measure three symptom domains associated with Attention Deficit Hyperactivity Disorder (ADHD); attention, impulsivity and hyperactivity. The App was pilot tested on 11 healthy adults over three test-ing sessions. No differences in performance were found between testing ses-sions suggesting good test consistency. A decrement in performance over time was only found for one measure of attention and on one testing session. The CPT showed some sensitivity to ADHD-related symptoms where self-reported impulsive behaviour was related to the CPT measures of impulsivity and activi-ty. User acceptability was good although some design improvements were sug-gested. Further pilot testing of the App in a clinical population is needed

    Light Gluinos and the Parton Structure of the Nucleon

    Full text link
    We study the effects of light gluinos with mass below about 1 GeV on the nucleon parton densities and the running of alpha_(S). It is shown that from the available high-statistics DIS data no lower bound on the gluino mass can be derived. Also in the new kinematical region accessible at HERA the influence of such light gluinos on structure f unctions is found to be very small and difficult to detect. For use in more direct searches involving final state signatures we present a radiative estimate of the gluino distribution in the nucleon.Comment: 23 pages, LateX, 8 figures, MPI-PhT/94-22, LMU-3/9

    Charm quark and D^* cross sections in deeply inelastic scattering at DESY HERA

    Get PDF
    A next-to-leading order Monte Carlo program for the calculation of heavy quark cross sections in deeply inelastic scattering is described. Concentrating on charm quark and D^*(2010) production at HERA, several distributions are presented and their variation with respect to charm quark mass, parton distribution set, and renormalization-factorization scale is studied.Comment: 15 pages including 8 figures. Uses Latex, Revtex, and psfig. References added - others updated. Several sentences/words added for clarity. Results/conclusions unchanged. To appear in Phys. Rev.

    Timelike Single-logarithm-resummed Splitting Functions

    Full text link
    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MSbar) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MSbar scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e+ e- annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature.Comment: Minor changes to the text, accepted for publication in Nucl. Phys.

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    J/psi production in relativistic heavy ion collisions from a multi-phase transport model

    Full text link
    Using A Multi-Phase Transport (AMPT) model, we study J/psi production from interactions between charm and anti-charm quarks in initial parton phase and between D and Dbar mesons in final hadron phase of relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). Including also the inverse reactions of J/psi absorption by gluons and light mesons, we find that the net number of J/psi from the parton and hadron phases is smaller than that expected from the superposition of initial nucleon-nucleon collisions, contrary to the J/psi enhancement predicted by the kinetic formation model. The production of J/psi is further suppressed if one includes the color screening effect in the parton phase. We have also studied the dependence of J/psi production on the charm quark mass and the effective charm meson mass.Comment: Figures redone with better statistic

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    corecore