13 research outputs found

    ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    Get PDF
    ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges

    Inclusive D±D^{*\pm} Cross Sections and D±D^{*\pm}-Jet Correlations in Photoproduction at HERA

    Get PDF
    Differential photoproduction cross sections are measured for events containing D*± mesons. The data were taken with the H1 detector at the ep collider HERA and correspond to an integrated luminosity of 51.1 pb-1. The kinematic region covers small photon virtualities Q2 < 0.01 GeV2 and photon–proton centre-of-mass energies of 171 < Wγ p < 256 GeV. The details of the heavy quark production process are further investigated in events with one or two jets in addition to the D*± meson. Differential cross sections for D*+jet production are determined and the correlations between the D*± meson and the jet(s) are studied. The results are compared with perturbative QCD predictions applying collinear- or kt-factorisation

    Corporate Practices

    No full text

    Production of D±D^{*\pm} Mesons with Dijets in Deep-Inelastic Scattering at HERA

    Get PDF
    Inclusive D*± production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D*± meson is investigated. The analysis covers values of photon virtuality 2 ≤ Q2 ≤ 100 GeV2 and of inelasticity 0.05≤y≤0.7. Differential cross sections are measured as a function of Q2 and x and of various D*± meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon–gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the kT-unintegrated gluon distribution of the proton

    Measurement of Inclusive and Dijet D* Meson Cross Sections in Photoproduction at HERA

    Get PDF
    The inclusive photoproduction of D * mesons and of D *-tagged dijets is investigated with the H1 detector at the ep collider HERA. The kinematic region covers small photon virtualities Q 21. 8 GeV. The heavy quark production process is further investigated in events with at least two jets with transverse momentum p T(jet)>3. 5 GeV each, one containing the D * meson. Differential cross sections for D *-tagged dijet production and for correlations between the jets are measured in the range {pipe}η(D *){pipe}<1. 5 and p T(D *)<2. 1 GeV. The results are compared with predictions from Monte Carlo simulations and next-to-leading order perturbative QCD calculations. © 2012 The Author(s).0SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    No full text
    International audienceATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges

    ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    No full text
    International audienceATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges
    corecore