9,065 research outputs found
Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement
We show that the quantum phase transition arising in a standard
radiation-matter model (Dicke model) belongs to the same universality class as
the infinitely-coordinated, transverse field XY model. The effective
qubit-qubit exchange interaction is shown to be proportional to the square of
the qubit-radiation coupling. A universal finite-size scaling is derived for
the corresponding two-qubit entanglement (concurrence) and a size-consistent
effective Hamiltonian is proposed for the qubit subsystem.Comment: 4 pages, 3 figures. Minor changes. Published versio
Efficient and robust initialization of a qubit register with fermionic atoms
We show that fermionic atoms have crucial advantages over bosonic atoms in
terms of loading in optical lattices for use as a possible quantum computation
device. After analyzing the change in the level structure of a non-uniform
confining potential as a periodic potential is superimposed to it, we show how
this structure combined with the Pauli principle and fermion degeneracy can be
exploited to create unit occupancy of the lattice sites with very high
efficiency.Comment: 4 pages, 3 figure
Controlling ultracold atoms in multi-band optical lattices for simulation of Kondo physics
We show that ultracold atoms can be controlled in multi-band optical lattices
through spatially periodic Raman pulses for investigation of a class of
strongly correlated physics related to the Kondo problem. The underlying
dynamics of this system is described by a spin-dependent fermionic or bosonic
Kondo-Hubbard lattice model even if we have only spin-independent atomic
collision interaction. We solve the bosonic Kondo-Hubbard lattice model through
a mean-field approximation, and the result shows a clear phase transition from
the ferromagnetic superfluid to the Kondo-signet insulator at the integer
filling.Comment: 4 pages, 2 figure
Free expansion of lowest Landau level states of trapped atoms: a wavefunction microscope
We show that for any lowest-Landau-level state of a trapped, rotating,
interacting Bose gas, the particle distribution in coordinate space in a free
expansion (time of flight) experiment is related to that in the trap at the
time it is turned off by a simple rescaling and rotation. When the
lowest-Landau-level approximation is valid, interactions can be neglected
during the expansion, even when they play an essential role in the ground state
when the trap is present. The correlations in the density in a single snapshot
can be used to obtain information about the fluid, such as whether a transition
to a quantum Hall state has occurred.Comment: 5 pages, no figures. v2: discussion of neglect of interactions during
expansion improved, refs adde
Low energy excitations of double quantum dots in the lowest Landau level regime
We study the spectrum and magnetic properties of double quantum dots in the
lowest Landau level for different values of the hopping and Zeeman parameters
by means of exact diagonalization techniques in systems of N=6 and N=7
electrons and filling factor close to 2. We compare our results with those
obtained in double quantum layers and single quantum dots. The Kohn theorem is
also discussed.Comment: 23 pages, 4 figures, 1 table; references added; journal versio
Long-Term Flux Monitoring of LSI +61 303 at 2.25 and 8.3 GHz
LSI +61 303 is an exotic binary system consisting of a ~10 Msun B star and a
compact object which is probably a neutron star. The system is associated with
the interesting radio source GT0236+610 that exhibits bright radio outbursts
with a period of 26.5 days. We report the results of continuous daily radio
interferometric observations of GT0236+610 at 2.25 and 8.3 GHz from 1994
January to 1996 February. The observations cover 25 complete (and 3 partial)
cycles with multiple observations each day. We detect substantial
cycle-to-cycle variability of the radio emission characterized by a rapid onset
of the radio flares followed by a more gradual decrease of the emission. We
detect a systematic change of the radio spectral index alpha which typically
becomes larger than zero at the onset of the radio outbursts. This behavior is
suggestive of expansion of material initially optically thick to radio
frequencies, indicating either that synchrotron or inverse Compton cooling are
important or that the free-free optical depth to the source is rapidly
changing. After two years of observations, we see only weak evidence for the
proposed 4-year periodic modulation in the peak flux of the outbursts. We
observe a secular trend in the outburst phases according the the best published
ephemeris. This trend indicates either orbital period evolution, or a drift in
outburst orbital phase in response to some other change in the system.Comment: 23 pages, LaTex, 7 figures, to appear in ApJ, v491, Dec 10th issue,
for associated info and preprints see
http://www.srl.caltech.edu/personnel/paulr/lsi.htm
On the properties of fractal cloud complexes
We study the physical properties derived from interstellar cloud complexes
having a fractal structure. We first generate fractal clouds with a given
fractal dimension and associate each clump with a maximum in the resulting
density field. Then, we discuss the effect that different criteria for clump
selection has on the derived global properties. We calculate the masses, sizes
and average densities of the clumps as a function of the fractal dimension
(D_f) and the fraction of the total mass in the form of clumps (epsilon). In
general, clump mass does not fulfill a simple power law with size of the type
M_cl ~ (R_cl)**(gamma), instead the power changes, from gamma ~ 3 at small
sizes to gamma<3 at larger sizes. The number of clumps per logarithmic mass
interval can be fitted to a power law N_cl ~ (M_cl)**(-alpha_M) in the range of
relatively large masses, and the corresponding size distribution is N_cl ~
(R_cl)**(-alpha_R) at large sizes. When all the mass is forming clumps
(epsilon=1) we obtain that as D_f increases from 2 to 3 alpha_M increases from
~0.3 to ~0.6 and alpha_R increases from ~1.0 to ~2.1. Comparison with
observations suggests that D_f ~ 2.6 is roughly consistent with the average
properties of the ISM. On the other hand, as the fraction of mass in clumps
decreases (epsilon<1) alpha_M increases and alpha_R decreases. When only ~10%
of the complex mass is in the form of dense clumps we obtain alpha_M ~ 1.2 for
D_f=2.6 (not very different from the Salpeter value 1.35), suggesting this a
likely link between the stellar initial mass function and the internal
structure of molecular cloud complexes.Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap
Topological transition in a two-dimensional model of liquid crystal
Simulations of nematic-isotropic transition of liquid crystals in two
dimensions are performed using an O(2) vector model characterised by non linear
nearest neighbour spin interaction governed by the fourth Legendre polynomial
. The system is studied through standard Finite-Size Scaling and
conformal rescaling of density profiles of correlation functions. A topological
transition between a paramagnetic phase at high temperature and a critical
phase at low temperature is observed. The low temperature limit is discussed in
the spin wave approximation and confirms the numerical results
Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice
Strong correlations can dramatically modify the thermodynamics of a quantum
many-particle system. Especially intriguing behaviour can appear when the
system adiabatically enters a strongly correlated regime, for the interplay
between entropy and strong interactions can lead to counterintuitive effects. A
well known example is the so-called Pomeranchuk effect, occurring when liquid
3He is adiabatically compressed towards its crystalline phase. Here, we report
on a novel anomalous, isentropic effect in a spin mixture of attractively
interacting fermionic atoms in an optical lattice. As we adiabatically increase
the attraction between the atoms we observe that the gas, instead of
contracting, anomalously expands. This expansion results from the combination
of two effects induced by pair formation in a lattice potential: the
suppression of quantum fluctuations as the attraction increases, which leads to
a dominant role of entropy, and the progressive loss of the spin degree of
freedom, which forces the gas to excite additional orbital degrees of freedom
and expand to outer regions of the trap in order to maintain the entropy. The
unexpected thermodynamics we observe reveal fundamentally distinctive features
of pairing in the fermionic Hubbard model.Comment: 6 pages (plus appendix), 6 figure
Microquasar models for 3EG J1828+0142 and 3EG J1735-1500
Microquasars are promising candidates to emit high-energy gamma-rays.
Moreover, statistical studies show that variable EGRET sources at low galactic
latitudes could be associated with the inner spiral arms. The variable nature
and the location in the Galaxy of the high-mass microquasars, concentrated in
the galactic plane and within 55 degrees from the galactic center, give to
these objects the status of likely counterparts of the variable low-latitude
EGRET sources. We consider in this work the two most variable EGRET sources at
low-latitudes: 3EG J1828+0142 and 3EG J1735-1500, proposing a microquasar model
to explain the EGRET data in consistency with the observations at lower
energies (from radio frequencies to soft gamma-rays) within the EGRET error
box.Comment: (1)Universitat de Barcelona, (2)Instituto Argentino de
Radioastronomia (3) Facultad de Ciencias Astronomicas y Geofisicas
(4)Lawrence Livermore National Laboratory 6 pages, 2 figures. Presented as a
poster at the V Microquasar Workshop, Beijing, June 2004. Accepted for
publication in the Chinese Journal of Astronomy & Astrophysic
- …
