67 research outputs found

    Large amplitude oscillatory motion along a solar filament

    Full text link
    Large amplitude oscillations of solar filaments is a phenomenon known for more than half a century. Recently, a new mode of oscillations, characterized by periodical plasma motions along the filament axis, was discovered. We analyze such an event, recorded on 23 January 2002 in Big Bear Solar Observatory Hα\alpha filtergrams, in order to infer the triggering mechanism and the nature of the restoring force. Motion along the filament axis of a distinct buldge-like feature was traced, to quantify the kinematics of the oscillatory motion. The data were fitted by a damped sine function, to estimate the basic parameters of the oscillations. In order to identify the triggering mechanism, morphological changes in the vicinity of the filament were analyzed. The observed oscillations of the plasma along the filament was characterized by an initial displacement of 24 Mm, initial velocity amplitude of 51 km/s, period of 50 min, and damping time of 115 min. We interpret the trigger in terms of poloidal magnetic flux injection by magnetic reconnection at one of the filament legs. The restoring force is caused by the magnetic pressure gradient along the filament axis. The period of oscillations, derived from the linearized equation of motion (harmonic oscillator) can be expressed as P=π2L/vAϕ4.4L/vAϕP=\pi\sqrt{2}L/v_{A\phi}\approx4.4L/v_{A\phi}, where vAϕ=Bϕ0/μ0ρv_{A\phi} =B_{\phi0}/\sqrt{\mu_0\rho} represents the Alfv\'en speed based on the equilibrium poloidal field Bϕ0B_{\phi0}. Combination of our measurements with some previous observations of the same kind of oscillations shows a good agreement with the proposed interpretation.Comment: Astron. Astrophys., 2007, in pres

    Combined STEREO/RHESSI study of CME acceleration and particle acceleration in solar flares

    Full text link
    Using the potential of two unprecedented missions, STEREO and RHESSI, we study three well observed fast CMEs that occurred close to the limb together with their associated high energy flare emissions in terms of RHESSI HXR spectra and flux evolution. From STEREO/EUVI and STEREO/COR1 data the full CME kinematics of the impulsive acceleration phase up to 4 Rs is measured with a high time cadence of less equal 2.5 min. For deriving CME velocity and acceleration we apply and test a new algorithm based on regularization methods. The CME maximum acceleration is achieved at heights h < 0.4 Rs, the peak velocity at h < 2.1 Rs (in one case as small as 0.5 Rs). We find that the CME acceleration profile and the flare energy release as evidenced in the RHESSI hard X-ray flux evolve in a synchronized manner. These results support the standard flare/CME model which is characterized by a feed-back relationship between the large-scale CME acceleration process and the energy release in the associated flare.Comment: accepted for Ap

    Morphology and density of post-CME current sheets

    Full text link
    Eruption of a coronal mass ejection (CME) drags and "opens" the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and the field relaxation by magnetic reconnection. We analyze physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to check if the interpretation of this phenomenon in terms of reconnecting current sheet is consistent with the observations. The study is focused on measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of rays indicates that they occur as a consequence of Petschek-like reconnection in the large scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km s1^{-1}, consistent with the narrow opening-angle of rays, adding up to a few degrees. The density of rays is an order of magnitude larger than in the ambient corona. The density-excess measurements are compared with the results of the analytical model in which the Petschek-like reconnection geometry is applied to the vertical current sheet, taking into account the decrease of the external coronal density and magnetic field with height. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to larger heights by the reconnection outflow

    A new method of measuring Forbush decreases

    Full text link
    Forbush decreases (FDs) are short-term depressions in the galactic cosmic ray flux and one of the common signatures of coronal mass ejections (CMEs) in the heliosphere. They often show a two-step profile, the second one associated with the CMEs magnetic structure (flux rope, FR), which can be described by the recently developed model ForbMod. The aim of this study is to utilise ForbMod to develop a best-fit procedure to be applied on FR-related FDs as a convenient measurement tool. We develop a best-fit procedure that can be applied to a data series from an arbitrary detector. Thus, the basic procedure facilitates measurement estimation of the magnitude of the FR-related FD, with the possibility of being adapted for the energy response of a specific detector for a more advanced analysis. The non-linear fitting was performed by calculating all possible ForbMod curves constrained within the FR borders to the designated dataset and minimising the mean square error (MSE). In order to evaluate the performance of the ForbMod best-fit procedure, we used synthetic measurements produced by calculating the theoretical ForbMod curve for a specific example CME and then applying various effects to the data to mimic the imperfection of the real measurements. We also tested the ForbMod best-fit function on the real data, measured by detector F of the SOHO-EPHIN instrument on a sample containing 30 events, all of which have a distinct FD corresponding to the CMEs magnetic structure. Overall, we find that the ForbMod best-fit procedure performs similar to the traditional algorithm-based observational method, but with slightly smaller values for the FD amplitude, as it is taking into account the noise in the data. Furthermore, we find that the best-fit procedure has an advantage compared to the traditional method as it can estimate the FD amplitude even when there is a data gap at the onset of the FD.Comment: 14 pages, 10 figures, A&

    The chaotic solar cycle II. Analysis of cosmogenic 10Be data

    Full text link
    Context. The variations of solar activity over long time intervals using a solar activity reconstruction based on the cosmogenic radionuclide 10Be measured in polar ice cores are studied. Methods. By applying methods of nonlinear dynamics, the solar activity cycle is studied using solar activity proxies that have been reaching into the past for over 9300 years. The complexity of the system is expressed by several parameters of nonlinear dynamics, such as embedding dimension or false nearest neighbors, and the method of delay coordinates is applied to the time series. We also fit a damped random walk model, which accurately describes the variability of quasars, to the solar 10Be data and investigate the corresponding power spectral distribution. The periods in the data series were searched by the Fourier and wavelet analyses. The solar activity on the long-term scale is found to be on the edge of chaotic behavior. This can explain the observed intermittent period of longer lasting solar activity minima. Filtering the data by eliminating variations below a certain period (the periods of 380 yr and 57 yr were used) yields a far more regular behavior of solar activity. A comparison between the results for the 10Be data with the 14C data shows many similarities. Both cosmogenic isotopes are strongly correlated mutually and with solar activity. Finally, we find that a series of damped random walk models provides a good fit to the 10Be data with a fixed characteristic time scale of 1000 years, which is roughly consistent with the quasi-periods found by the Fourier and wavelet analyses.Comment: 8 pages, 11 figure

    Temporal comparison of nonthermal flare emission and magnetic-flux change rates

    Full text link
    To test the standard flare model (CSHKP-model), we measured the magnetic-flux change rate in five flare events of different GOES classes using chromospheric/photospheric observations and compared its progression with observed nonthermal flare emission. We calculated the cumulated positive and negative magnetic flux participating in the reconnection process, as well as the total reconnection flux. Finally, we investigated the relations between the total reconnection flux, the GOES class of the events, and the linear velocity of the flare-associated CMEs. Using high-cadence H-alpha and TRACE 1600 A image time-series data and MDI/SOHO magnetograms, we measured the required observables (newly brightened flare area and magnetic-field strength inside this area). RHESSI and INTEGRAL hard X-ray time profiles in nonthermal energy bands were used as observable proxies for the flare-energy release rate. We detected strong temporal correlations between the derived magnetic-flux change rate and the observed nonthermal emission of all events. The cumulated positive and negative fluxes, with flux ratios of between 0.64 and 1.35, were almost equivalent to each other. Total reconnection fluxes ranged between 1.8 x 10^21 Mx for the weakest event (GOES class B9.5) and 15.5 x 10^21 Mx for the most energetic one (GOES class X17.2). The amount of magnetic flux participating in the reconnection process was higher in more energetic events than in weaker ones. Flares with more reconnection flux were associated with faster CMEs.Comment: 12 pages, 13 figure
    corecore