92 research outputs found

    Thermal and luminescent properties of M2Zn(VO3) 4 (M = Rb, Cs)

    Full text link
    We have developed processes for the synthesis of the Rb 2Zn(VO3)4 and Cs2Zn(VO 3)4 tetrametavanadates. Rb2Zn(VO 3)4 has been prepared by solid-state reaction (350 C) between presynthesized RbVO3 and ZnV2O6 powders, and Cs2Zn(VO3)4 has been prepared by the Pechini method (sol-gel process). Both metavanadates crystallize in monoclinic symmetry (sp. gr. P21/m). Thermochemical characterization results demonstrate that the vanadates undergo complex transformations during heating to 450 C and subsequent cooling. As a result, the materials are in a nonequilibrium state at room temperature and consist of both the parent double metavanadates and their peritectic decomposition products. We believe that the formation of the structure of the M2Zn(VO3)4 compounds from their melts is a kinetically hindered process. These compounds are structurally stable only at temperatures below 369 (Rb2Zn(VO 3)4) or 420 C (Cs2Zn(VO3) 4). We have measured for the first time the diffuse reflectance and photoluminescence excitation spectra of the two tetrametavanadates in their emission range and their photoluminescence spectra at various excitation wavelengths and determined their chromaticity coordinates. Their X-ray luminescence and scintillation decay characteristics have been determined for the first time under pulsed electron beam excitation. The electron excitation dissipation processes in the cesium and rubidium compounds are shown to be similar. We discuss the origin of the emission bands in the mixed vanadates and their potential application areas. © 2013 Pleiades Publishing, Ltd

    Transcription Impacts the Efficiency of mRNA Translation via Co-transcriptional N6-adenosine Methylation

    Get PDF
    Transcription and translation are two main pillars of gene expression. Due to the different timings, spots of action, and mechanisms of regulation, these processes are mainly regarded as distinct and generally uncoupled, despite serving a common purpose. Here, we sought for a possible connection between transcription and translation. Employing an unbiased screen of multiple human promoters, we identified a positive effect of TATA box on translation and a general coupling between mRNA expression and translational efficiency. Using a CRISPR-Cas9-mediated approach, genome-wide analyses, and in vitro experiments, we show that the rate of transcription regulates the efficiency of translation. Furthermore, we demonstrate that m6A modification of mRNAs is co-transcriptional and depends upon the dynamics of the transcribing RNAPII. Suboptimal transcription rates lead to elevated m6A content, which may result in reduced translation. This study uncovers a general and widespread link between transcription and translation that is governed by epigenetic modification of mRNAs

    Synthesis, Crystal Structure and Luminescent Properties of Pyrovanadates A2CaV2O7 (A = Rb, Cs)

    Full text link
    The novel vanadium oxides Rb2CaV2O7 and Cs2CaV2O7 have been prepared by solid-state reaction and their crystal structures determined and refined using X-ray, neutron powder and electron diffraction data. Rb2CaV2O7 and Cs2CaV2O7 are isostructural, crystallizing in space group P21/n with unit cell parameters: a = 13.8780(1), b = 5.96394(5), c = 10.3376(1) Å, β = 104.960(1)° and a = 14.0713(2), b = 6.0934(1), c = 10.5944(1) Å, β = 104.608(1)°, respectively. Their crystal structures can be described as a framework of CaO6 octahedra and V2O7 pyrogroups with alkaline metals found in the tunnels formed. Photoluminescence (PL) and PL excitation spectra of the considered pyrovanadates have been studied in the vacuum ultraviolet (VUV) to visible light (Vis) range as well as their pulse cathode luminescence (PCL) spectra and the kinetic parameters of PCL. In the PL and the PCL spectra of both pyrovanadates recorded at T = 300 K a broad band with maxima at 2.2, 2.4 eV and two shoulders (bands) at 2.0 and 2.58 eV have been observed. At T = 10 K the band at 2.0 eV becomes the main band in the spectra. Two types of luminescence centers for each pyrovanadate, with very similar excitation bands at 3.75, 4.84, 6.2, 7.3 and 9.1 eV, have been found. The nature of the luminescence centers connected with the bands at 2.0, 2.2, 2.4 and 2.58 eV is discussed. © 2008 Elsevier Masson SAS. All rights reserved.This work was supported by the Russian–American program “Fundamental research and higher education” (CRDF REC-005: grant EK-005-X1 fund of the Ural Scientific Educational Center “Perspectivnie materiali”), by the Russian Foundation for Basic Research under Grant No. 07-03-00143, by the Council for Grants of the President of the Russian Federation for Support of Young Scientists (grant no. MK–84.2007.3) and ICDD Grant-in-Aid № 93-09 (2005–2006). Gunnar Svensson wants to thank the Swedish research council for financial support

    The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock

    Get PDF
    RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5' end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered

    The population history of northeastern Siberia since the Pleistocene.

    Get PDF
    Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas

    Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control.

    Get PDF
    N6-methyladenosine (m6A) is an abundant internal RNA modification in both coding and non-coding RNAs that is catalysed by the METTL3-METTL14 methyltransferase complex. However, the specific role of these enzymes in cancer is still largely unknown. Here we define a pathway that is specific for METTL3 and is implicated in the maintenance of a leukaemic state. We identify METTL3 as an essential gene for growth of acute myeloid leukaemia cells in two distinct genetic screens. Downregulation of METTL3 results in cell cycle arrest, differentiation of leukaemic cells and failure to establish leukaemia in immunodeficient mice. We show that METTL3, independently of METTL14, associates with chromatin and localizes to the transcriptional start sites of active genes. The vast majority of these genes have the CAATT-box binding protein CEBPZ present at the transcriptional start site, and this is required for recruitment of METTL3 to chromatin. Promoter-bound METTL3 induces m6A modification within the coding region of the associated mRNA transcript, and enhances its translation by relieving ribosome stalling. We show that genes regulated by METTL3 in this way are necessary for acute myeloid leukaemia. Together, these data define METTL3 as a regulator of a chromatin-based pathway that is necessary for maintenance of the leukaemic state and identify this enzyme as a potential therapeutic target for acute myeloid leukaemia

    Phenotypes Determined by Cluster Analysis and Their Survival in the Prospective European Scleroderma Trials and Research Cohort of Patients With Systemic Sclerosis

    Get PDF
    Objective: Systemic sclerosis (SSc) is a heterogeneous connective tissue disease that is typically subdivided into limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc) depending on the extent of skin involvement. This subclassification may not capture the entire variability of clinical phenotypes. The European Scleroderma Trials and Research (EUSTAR) database includes data on a prospective cohort of SSc patients from 122 European referral centers. This study was undertaken to perform a cluster analysis of EUSTAR data to distinguish and characterize homogeneous phenotypes without any a priori assumptions, and to examine survival among the clusters obtained. / Methods: A total of 11,318 patients were registered in the EUSTAR database, and 6,927 were included in the study. Twenty‐four clinical and serologic variables were used for clustering. / Results: Clustering analyses provided a first delineation of 2 clusters showing moderate stability. In an exploratory attempt, we further characterized 6 homogeneous groups that differed with regard to their clinical features, autoantibody profile, and mortality. Some groups resembled usual dcSSc or lcSSc prototypes, but others exhibited unique features, such as a majority of lcSSc patients with a high rate of visceral damage and antitopoisomerase antibodies. Prognosis varied among groups and the presence of organ damage markedly impacted survival regardless of cutaneous involvement. / Conclusion: Our findings suggest that restricting subsets of SSc patients to only those based on cutaneous involvement may not capture the complete heterogeneity of the disease. Organ damage and antibody profile should be taken into consideration when individuating homogeneous groups of patients with a distinct prognosis
    corecore