175 research outputs found

    An Integrated Serial to Parallel Converter for Teletext Application

    Full text link

    A new clinico-pathological classification system for mesial temporal sclerosis

    Get PDF
    We propose a histopathological classification system for hippocampal cell loss in patients suffering from mesial temporal lobe epilepsies (MTLE). One hundred and seventy-eight surgically resected specimens were microscopically examined with respect to neuronal cell loss in hippocampal subfields CA1–CA4 and dentate gyrus. Five distinct patterns were recognized within a consecutive cohort of anatomically well-preserved surgical specimens. The first group comprised hippocampi with neuronal cell densities not significantly different from age matched autopsy controls [no mesial temporal sclerosis (no MTS); n = 34, 19%]. A classical pattern with severe cell loss in CA1 and moderate neuronal loss in all other subfields excluding CA2 was observed in 33 cases (19%), whereas the vast majority of cases showed extensive neuronal cell loss in all hippocampal subfields (n = 94, 53%). Due to considerable similarities of neuronal cell loss patterns and clinical histories, we designated these two groups as MTS type 1a and 1b, respectively. We further distinguished two atypical variants characterized either by severe neuronal loss restricted to sector CA1 (MTS type 2; n = 10, 6%) or to the hilar region (MTS type 3, n = 7, 4%). Correlation with clinical data pointed to an early age of initial precipitating injury (IPI < 3 years) as important predictor of hippocampal pathology, i.e. MTS type 1a and 1b. In MTS type 2, IPIs were documented at a later age (mean 6 years), whereas in MTS type 3 and normal appearing hippocampus (no MTS) the first event appeared beyond the age of 13 and 16 years, respectively. In addition, postsurgical outcome was significantly worse in atypical MTS, especially MTS type 3 with only 28% of patients having seizure relief after 1-year follow-up period, compared to successful seizure control in MTS types 1a and 1b (72 and 73%). Our classification system appears suitable for stratifying the clinically heterogeneous group of MTLE patients also with respect to postsurgical outcome studies

    Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond

    Full text link
    A quantum register coupled to a spin-photon interface is a key component in quantum communication and information processing. Group-IV color centers in diamond (SiV, GeV, and SnV) are promising candidates for this application, comprising an electronic spin with optical transitions coupled to a nuclear spin as the quantum register. However, the creation of a quantum register for these color centers with deterministic and strong coupling to the spin-photon interface remains challenging. Here, we make first-principles predictions of the hyperfine parameters of the group-IV color centers, which we verify experimentally with a comprehensive comparison between the spectra of spin active and spin neutral intrinsic dopant nuclei in single GeV and SnV emitters. In line with the theoretical predictions, detailed spectroscopy on large sample sizes reveals that hyperfine coupling causes a splitting of the optical transition of SnV an order of magnitude larger than the optical linewidth and provides a magnetic-field insensitive transition. This strong coupling provides access to a new regime for quantum registers in diamond color centers, opening avenues for novel spin-photon entanglement and quantum sensing schemes for these well-studied emitters

    Autoantibodies to Osteoprotegerin are Associated with Low Hip Bone Mineral Density and History of Fractures in Axial Spondyloarthritis: A Cross-Sectional Observational Study

    Get PDF
    Osteoporosis is a recognised complication of axial spondyloarthritis (axSpA) and is thought to be due to functional impairment and the osteoclast-activating effects of proinflammatory cytokines. The development of autoantibodies to OPG (OPG-Ab) has been associated with severe osteoporosis and increased bone resorption in rheumatoid arthritis. In this study, we screened for the presence of OPG-Ab in axSpA and reviewed their clinical significance. We studied 134 patients, recruited from two centres in the United Kingdom. Their mean age was 47.5 years and 75% were male. Concentrations of OPG-Ab were related to bone mineral density (BMD) and fracture history using linear and logistic regression models adjusting for age, gender, disease duration and activity, body mass index and bisphosphonate use. We detected OPG-Ab in 11/134 patients (8.2%). Femoral neck and total hip BMD were significantly reduced in OPG-Ab positive patients (0.827 vs. 0.967 g/cm2, p = 0.008 and 0.868 vs. 1.028 g/cm2, p = 0.002, respectively). Regression analysis showed that the presence of OPG-Ab was independently associated with total hip osteopenia (ORadj 24.2; 95% CI 2.57, 228) and history of fractures (ORadj 10.5; 95% CI 2.07, 53.3). OPG-Ab concentration was associated with total hip BMD in g/cm2 (ß = −1.15; 95% CI −0.25, −0.04). There were no associations between OPG-Ab concentration and bone turnover markers, but free sRANKL concentrations were lower in OPG-Ab-positive patients (median 0.04 vs. 0.11 pmol/L, p = 0.050). We conclude that OPG-Ab are associated with hip BMD and fractures in axSpA suggesting that they may contribute to the pathogenesis of bone loss in some patients with this condition

    Characterizing benthic macroinvertebrate and algal biological condition gradient models for California wadeable Streams, USA

    Get PDF
    The Biological Condition Gradient (BCG) is a conceptual model that describes changes in aquatic communities under increasing levels of anthropogenic stress. The BCG helps decision-makers connect narrative water quality goals (e.g., maintenance of natural structure and function) to quantitative measures of ecological condition by linking index thresholds based on statistical distributions (e.g., percentiles of reference distributions) to expert descriptions of changes in biological condition along disturbance gradients. As a result, the BCG may be more meaningful to managers and the public than indices alone. To develop a BCG model, biological response to stress is divided into 6 levels of condition, represented as changes in biological structure (abundance and diversity of pollution sensitive versus tolerant taxa) and function. We developed benthic macroinvertebrate (BMI) and algal BCG models for California perennial wadeable streams to support interpretation of percentiles of reference-based thresholds for bioassessment indices (i.e., the California Stream Condition Index [CSCI] for BMI and the Algal Stream Condition Index [ASCI] for diatoms and soft-bodied algae). Two panels (one of BMI ecologists and the other of algal ecologists) each calibrated a general BCG model to California wadeable streams by first assigning taxa to specific tolerance and sensitivity attributes, and then independently assigning test samples (264 BMI and 248 algae samples) to BCG Levels 1–6. Consensus on the assignments was developed within each assemblage panel using a modified Delphi method. Panels then developed detailed narratives of changes in BMI and algal taxa that correspond to the 6 BCG levels. Consensus among experts was high, with 81% and 82% expert agreement within 0.5 units of assigned BCG level for BMIs and algae, respectively. According to both BCG models, the 10th percentiles index scores at reference sites corresponded to a BCG Level 3, suggesting that this type of threshold would protect against moderate changes in structure and function while allowing loss of some sensitive taxa. The BCG provides a framework to interpret changes in aquatic biological condition along a gradient of stress. The resulting relationship between index scores and BCG levels and narratives can help decision-makers select thresholds and communicate how these values protect aquatic life use goals

    International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe

    Get PDF
    In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors’ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible

    Coastal groundwater discharge – an additional source of phosphorus for the oligotrophic wetlands of the Everglades

    Get PDF
    In this manuscript we define a new term we call coastal groundwater discharge (CGD), which is related to submarine groundwater discharge (SGD), but occurs when seawater intrudes inland to force brackish groundwater to discharge to the coastal wetlands. A hydrologic and geochemical investigation of both the groundwater and surface water in the southern Everglades was conducted to investigate the occurrence of CGD associated with seawater intrusion. During the wet season, the surface water chemistry remained fresh. Enhanced chloride, sodium, and calcium concentrations, indicative of brackish groundwater discharge, were observed in the surface water during the dry season. Brackish groundwaters of the southern Everglades contain 1–2.3μM concentrations of total phosphorus (TP). These concentrations exceed the expected values predicted by conservative mixing of local fresh groundwater and intruding seawater, which both have TPμM. The additional source of TP may be from seawater sediments or from the aquifer matrix as a result of water–rock interactions (such as carbonate mineral dissolution and ion exchange reactions) induced by mixing fresh groundwater with intruding seawater. We hypothesize that CGD maybe an additional source of phosphorus (a limiting nutrient) to the coastal wetlands of the southern Everglades
    • …
    corecore