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A R T I C L E I N F O
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A B S T R A C T

The Biological Condition Gradient (BCG) is a conceptual model that describes changes in aquatic communities
under increasing levels of anthropogenic stress. The BCG helps decision-makers connect narrative water quality
goals (e.g., maintenance of natural structure and function) to quantitative measures of ecological condition by
linking index thresholds based on statistical distributions (e.g., percentiles of reference distributions) to expert
descriptions of changes in biological condition along disturbance gradients. As a result, the BCG may be more
meaningful to managers and the public than indices alone. To develop a BCG model, biological response to stress
is divided into 6 levels of condition, represented as changes in biological structure (abundance and diversity of
pollution sensitive versus tolerant taxa) and function. We developed benthic macroinvertebrate (BMI) and algal
BCG models for California perennial wadeable streams to support interpretation of percentiles of reference-based
thresholds for bioassessment indices (i.e., the California Stream Condition Index [CSCI] for BMI and the Algal
Stream Condition Index [ASCI] for diatoms and soft-bodied algae). Two panels (one of BMI ecologists and the
other of algal ecologists) each calibrated a general BCG model to California wadeable streams by first assigning
taxa to specific tolerance and sensitivity attributes, and then independently assigning test samples (264 BMI and
248 algae samples) to BCG Levels 1–6. Consensus on the assignments was developed within each assemblage
panel using a modified Delphi method. Panels then developed detailed narratives of changes in BMI and algal
taxa that correspond to the 6 BCG levels. Consensus among experts was high, with 81% and 82% expert
agreement within 0.5 units of assigned BCG level for BMIs and algae, respectively. According to both BCG
models, the 10th percentiles index scores at reference sites corresponded to a BCG Level 3, suggesting that this
type of threshold would protect against moderate changes in structure and function while allowing loss of some
sensitive taxa. The BCG provides a framework to interpret changes in aquatic biological condition along a
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gradient of stress. The resulting relationship between index scores and BCG levels and narratives can help de-
cision-makers select thresholds and communicate how these values protect aquatic life use goals.

1. Introduction

Quantitative water quality goals to protect and restore biological
integrity are cornerstones of federal and state water quality protection
programs (e.g., California Porter Cologne Act 1969, Federal Water
Pollution Control Act 1972, EU Water Framework Directive 2000).
However, setting quantitative goals is challenging because of com-
plexities in translating species composition and abundance (biological
condition) into targets that represent narrative goals like “integrity” or
“balanced”. Many states in the USA have developed quantitative
bioassessment indices to measure and assess attainment of biological
integrity goals (Davis and Simon, 1995; USEPA, 2002; Yoder and
Barbour, 2009). These indices are typically based on assemblage
structure assessed relative to that observed in reference sites with
comparable environmental settings (Reynoldson et al., 1997; Hawkins
et al., 2010). These indices rely on empirical data to identify present-
day reference conditions, quantified from least disturbed landscapes
and used to construct the index. Biological integrity goals or numeric
targets are frequently characterized by deviation from the reference site
population, calculated as a statistical characteristic (e.g., 30th, 10th, or
1st percentile) of reference site bioassessment index score distributions
(e.g., Barbour et al., 1999; Mazor et al., 2016). However, because re-
ference sites are typically based on a “best available” or “least dis-
turbed” definition (Stoddard et al., 2006), their condition may include
historic degradation, unmeasured anthropogenic stress (e.g., chemicals
for which there are no measurements), or changes over time associated
with factors such as climate change (Poff et al., 2010). As a result,
moderately disturbed reference sites may influence the reference dis-
tribution and reference-based indices would then potentially assess sites
against an already degraded benchmark. More importantly, although
these indices and percentile thresholds provide statistically re-
producible and unbiased assessments of biological integrity,

communicating to policy makers, managers, and the public the appro-
priateness of a selected statistical value as a representation of biological
integrity goals is challenging. However, communicating what different
values of the indices mean can be enhanced when linked to a clear
narrative of the biological structural or functional changes that are
protected or lost along the numeric range.

The Biological Condition Gradient (BCG) is a conceptual model that
describes structural and functional changes in stream systems as they
degrade in response to human disturbance (Fig. 1) (Davies and Jackson,
2006; United States Environmental Protection Agency (USEPA), 2016).
The BCG is a standard biological response gradient intended to have a
universal meaning, so that interpretations do not vary across regions,
and the theoretical levels can be applied to any waterbody. It can be
used for interpreting biological indices and for comparing and re-
conciling regional differences in reference condition, types of indices,
or even indices for different assemblages. It was developed, in part, to
supplement biological threshold interpretations based on statistical
index properties with additional interpretations based on ecological
properties (i.e., taxa richness, species composition, tolerance and
functional organization) and help managers identify values along a
numeric biological index where protection of aquatic life use lies.

The process of calibrating BCG models to a new region begins with
identifying experts familiar with the ecology of degraded and natural
ecosystems in the study area and training them in the BCG concept and
approach. They are then asked to assign BCG taxa attributes (sensi-
tivity/tolerance, endemic, invasive, etc.) to regional taxa and to place
sites into one of the 6 BCG levels based on taxonomic composition and
abundance, accompanied by geographic information on site location to
inform expectation (Davies and Jackson, 2006; United States
Environmental Protection Agency (USEPA), 2016; Gerritsen et al.,
2017). Although experts are provided limited environmental informa-
tion about the sites (e.g., elevation, climate, geology), they are given no

Fig. 1. The Biological Condition Gradient (BCG) conceptual model (adapted from Davies and Jackson, 2006 and USEPA 2016).
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information about disturbance or human activities in the watershed or
about stressors measured at the site (e.g., water chemistry or habitat
data). Therefore, their judgments about biological condition are based
purely on biological data (i.e., taxonomic data and metrics calculated
from them). Experts are also asked to record their decision-making
process in ecological terms. The BCG calibration efforts, thus, capture
the breadth and depth of expert ecological interpretation regarding
sample composition along disturbance gradients. The final BCG level
assignments can be plotted and modeled against bioassessment index
scores calculated for the same samples. BCG scores and their consensus
narrative ecological descriptions can then be linked to any specific
biological index score.

BCG narratives, which contain language similar to state aquatic life
use narratives, can support the interpretation of bioassessment indices,
provide additional rationale for the selection of numeric biological in-
tegrity goals and communicate to stakeholders the ecological changes
associated with these goals (Davies and Jackson, 2006; Gerritsen et al.,
2017). California is a prime example of where such decision support is
helpful. The state has a strong wadeable stream bioassessment program,
supported by well-established protocols, training and quality assurance,
and a broad network of least disturbed reference sites (Ode et al.,
2016). A robust statewide bioassessment dataset exists, representing
both BMI and algal assemblages as well as a comprehensive set of data
on stressors (e.g., chemical, physical habitat). The California State
Water Resources Control Board (Water Board) staff is proposing a
policy to protect biological integrity in wadeable streams using
thresholds of numeric indices to protect narrative aquatic life uses. The

Water Board adopted the California Stream Condition Index (CSCI;
Mazor et al., 2016) which provides a numeric score of biological con-
dition based on benthic macroinvertebrate (BMI) bioassessment data
and supported the development of an algal stream condition index
(ASCI; S. Theroux, pers. comm.), which is based on both diatom and
soft-bodied algal assemblages. Both indices are expressed as ratios.
Values close to 1 indicate a sample similar to reference expectation;
lower scores indicate biological assemblages that differ from the re-
ference expectation. Mazor et al. (2016) proposed narratives of “likely
intact,” “possibly altered,” “likely altered,” and “very likely altered”
associated with the greater than 30th, 30-10th, 10-1st, and < 1st
percentiles of reference as interpretation of the CSCI. Similar thresholds
will be developed for the ASCI. However, communication of what these
percentiles of reference represent in terms of loss of ecosystem structure
and function would be helpful for supporting policy decisions on nu-
meric biological integrity goals.

The purpose of this work was to: 1) assign BMI and algal BCG taxon
attribute scores to taxa; 2) assign BCG levels to 250 + California
wadeable stream samples along human disturbance gradients; 3) de-
velop narratives of structural and functional changes for BCG levels
specifically associated with degradation of California wadeable
streams; and 4) compare BCG levels (Fig. 1, levels 1–6) with CSCI and
ASCI numeric scores to relate percentile of reference thresholds (30th,
10th, 1st) to narratives associated with the loss of benthic invertebrate
and algal community structure and function.

Fig. 2. Process diagram for calibration of the BCG in California.
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2. Methods

2.1. The BCG process

A multistep process was followed to calibrate a BCG to California
wadeable stream conditions (Fig. 2). The process included assembling
data, orienting experts to the taxa attribute and level assignment pro-
cesses and using an expert BCG level assignment framework to describe
the BCG in terms of observed assemblage response to anthropogenic
stressors. This calibration process is like those used in BCG development
in other regions (Gerritsen et al., 2017; United States Environmental
Protection Agency (USEPA), 2016). Assessing condition of biological
assemblages (e.g., by interpreting bioassessment indices) involves
professional judgment (e.g., selection of a percentile) even when such
judgment may be embedded within objective, quantitative approaches
(e.g., Steedman, 1994; Borja et al., 2004; Weisberg et al., 2008). This
California BCG calibration relies explicitly on professional judgment
and development of consensus supported by data and uses both in-
dividual and group interpretations.

BCG calibration began with the assembly and analysis of biological
monitoring data. Samples were selected to represent a full gradient of
natural and stressor conditions based on existing classification schemes,
stressor information, and biological indices. Data were organized to
support analyses and review by experts. Nine experts in BMI and five
experts in algal ecology in California were identified. All 9 BMI experts
were from California, with specific expertise including southern to

northern as well as Sierra Nevada to coastal stream assemblages. Algal
experts included a California expert, and 4 experts from outside the
state but with experience working with California taxa from national
surveys. Experts were given an orientation on the theoretical basis of
the BCG, the BCG level assignment process, and an introduction to taxa
attributes (taxa characteristics; SI Table 1). After training, the experts
gathered for the first workshop, in which they agreed on and completed
taxa attribute assignments and received training in assigning samples to
BCG levels. The training demonstrated how experts were expected to
interpret sample data in the context of BCG level definitions, assign
BCG levels to samples independently, compose rationale for their rat-
ings, and reconcile multiple ratings per sample. Between the first and
second workshop, experts independently assigned sites to BCG levels
(1–6, Fig. 1). The second workshop was held to reconcile ratings and
eventually agree on a consensus BCG level assignment for each sample.
The results of the expert consensus process included ratings for
250 + samples for each assemblage and narrative statements de-
scribing the biological characteristics of each BCG level. The narratives
were based on the rationale of independent experts when deciding on
their ratings and from group discussions. The final steps in the cali-
bration process included relating the BCG level assignments to CSCI and
ASCI scores to provide managers a narrative description of ecological
conditions associated with percentile of reference.

Fig. 3. Sample site locations throughout California, showing the assemblages sampled and the Perennial Stream Assessment (PSA) region.
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2.2. BCG taxon attribute development

In the BCG conceptual model, biological attributes of aquatic eco-
systems change along a gradient of increasing anthropogenic stress
including factors like nutrient enrichment, physical habitat degrada-
tion, and flow modification. All taxa attributes were relevant in the
California BCG calibration (SI Table 1). Detailed attribute definitions
were thoroughly reviewed by the expert panels before assigning attri-
butes to any taxa (United States Environmental Protection Agency
(USEPA), 2016). Because the number of taxa to which experts were
required to assign attributes was large (> 1200 combined), initial taxa
assignments were estimated by BCG facilitators using information from
existing tolerance values and California specific tolerance metric cal-
culations consistent with other BCG calibration efforts (Hausmann
et al., 2016; Gerritsen et al., 2017). Experts used these tolerance metrics
and supplemental analyses (e.g., taxon specific stress-response curves)
to refine the initial attribute assignments.

Tolerance metrics (17) calculated as central tendencies, environ-
mental limits and optima were calculated for taxa that occurred in at
least 10 samples from environmental stress-response curves and made
available to experts for the purpose of assigning attribute values to each
taxon (see Yuan, 2006). These analyses examined the response of taxa
to stressor variables (e.g., conductivity, total nitrogen, and total phos-
phorus). Tolerance metrics, expressed as central tendencies, describe
the average environmental conditions under which a taxon is likely to
occur. Central tendencies were estimated by computing the mean of the
product of taxon abundance and the environmental stressor variable,
calculated using both abundance and presence/absence, assuming a
normal distribution across the environmental gradient. The width of the
bell shape is defined as tolerance and should not be confused with the
tolerance scale used to describe general taxon sensitivity (Hilsenhoff,
1987). Weighted cumulative distribution functions (CDFs) were used to
estimate tolerance in non-uniform sample distributions. Environmental
limits attempt to capture the maximum or the minimum level of an
environmental variable under which a taxon is likely to persist, while
optima define the environmental conditions that are most preferred by
a given taxon. Both limits and optima can be derived from observa-
tional data or regression relationships. The area under the curve of 95th
percentile cumulative percentiles (CPs) was used to represent the en-
vironmental limits a taxon can tolerate. Taxa optima (i.e., the central
tendency) were estimated using the median values of the CDF and the
CP of the regression models. Regression estimates of taxon-specific
stress response relationships were developed using linear regression
models (LRM), quadratic logistic regression models (QLRM), and gen-
eralized additive models (GAM). Tolerance metrics developed from
these statistical methods were generally correlated, so variations due to
statistical approaches were minimized by taking an average of results
from all methods. Tolerance metrics from both abundance and pre-
sence/absence based models, were ranked and taxa scores translated to
assign the initial taxa attribute levels from II to V. These initial analyses
cannot infer attribute level I taxa, which were assigned by experts in the

first workshop. The stressor response analysis was applied for 769 in-
vertebrate taxa for which there was enough data, while stressor re-
sponse analysis was applied for 318 diatom genera and species and for
58 soft bodied algae (SBA) genera. At the species level, there were
generally few SBA occurrences that could be used to model stressor-
response patterns.

During the first workshop, experts refined the initial taxa attribute
assignments, including identifying level I taxa, based largely on their
knowledge of the taxa and the conditions under which they occur, in-
formed by calculations of the taxon-specific tolerance metrics or lit-
erature derived tolerance values (e.g., Rott et al., 1999; Potapova and
Charles, 2007; Stevenson et al., 2008; Lange-Bertalot et al., 2017).
Open panel discussions focused on taxa for which there was disagree-
ment which arose largely from continent-scale geographic differences
in taxonomic expertise. Unlike site scoring, attribute assignment was
not anonymous, so a potential for biased influence in attribute assign-
ments may have existed. Given the number of taxa and the limited
disagreements, we feel this bias was likely minimal. Final taxa attribute
assignments were included as information for site scoring and used by
experts to rate sites along the BCG scale.

2.3. Sample selection for expert scoring

Sites for expert review were selected from the California Surface
Water Ambient Monitoring Program (SWAMP), Perennial Streams
Assessment (PSA), Stormwater Monitoring Coalition (SMC) program
databases and other sources. A total of 264 sites were scored for mac-
roinvertebrate BCG and 248 for algae BCG (Fig. 3). They cover a wide
range of characteristics representing the diverse environmental settings
encountered throughout California (Table 1). Selection criteria were
established to distribute site types among physiographic regions, bio-
logical condition based on biological metrics and reference status, and
stressor types based on land cover and water quality. That is, sites were
selected to represent diverse natural settings found across the state, as
well as to represent gradients of stress from a range of representative
human activities, including: forestry, agriculture, urbanization, chan-
nelization, and hydropower. Efforts were made to include some sites
representing unusual or challenging circumstances.

Approximately 200 samples with paired BMI and algal data were
reviewed by experts during the first round. After initial scoring, addi-
tional samples were requested by experts to expand the distribution
among California PSA regions (Fig. 3); in contrast to the initial set,
these additional BMI and algal samples were not paired.

2.4. Data preparation and presentation for BCG scoring

Data provided to experts for sample scoring included raw taxonomic
data, metrics of taxa attributes upon which experts had previously
agreed (SI Fig. 1), and data descriptive of natural biogeographic gra-
dients in California wadeable streams (e.g., elevation, mean annual
precipitation, dominant geology). Raw taxonomic data were provided
to experts in the form of taxa lists with enumeration per taxon. Mac-
roinvertebrate samples had approximately 600 organisms collected
using standardized methods known to the experts (Ode et al., 2016) and
identified to a range of taxonomic resolutions from species to class, with
the majority identified to genus. Similarly, algal samples were also
collected using standard methods (Fetscher et al., 2009). Sample data
included 600 valve target diatom counts, lists of soft algae taxa ob-
served, collection type (qualitative, macroalgae, microalgae, or epi-
phyte), and calculated biovolume (Fetscher et al., 2014).

In addition to the raw data for each assemblage, sample data in-
cluded metrics commonly used in assessment (e.g., tolerance, func-
tional feeding group) and metrics based on taxa attributes (e.g., percent
BCG level 2 individuals). BMI experts had some information from the
CSCI model. The CSCI is a combination of a predictive multimetric
index (MMI) and an observed/expected (O/E) taxonomic completeness

Table 1
Descriptive statistics for natural and stressor variables in California samples
reviewed by BMI and algal expert panels.

Variable Min Mean Max

Collection Year 1998 2011 2015
Catchment Area (km2) 1 315 8812
Elevation (m) 3 651 3130
Average Air Temperature (oC) 6.4 20.9 29.7
Precipitation (m/y) 0.09 0.66 2.0
Agricultural and Urban Cover (%) 0.0 10.0 88.8
Total Phosphorus (mg/L) 0.0 0.18 5.1
Total Nitrogen (mg/L) 0.0 1.02 34
Specific Conductance (µS/cm) 8 540 6381
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model (Mazor et al., 2016). For BMI experts, basic metrics were im-
mediately displayed with each sample, including those that compose
the MMI, whereas expected taxa richness (from the O/E model of the
CSCI) was hidden, giving experts an opportunity to interpret the sample
composition without revealing expected richness. CSCI scores were
never displayed. BMI experts could have calculated an O/E score from
expected taxon capture probabilities but calculating a CSCI score would
have been difficult. For algal experts, the ASCI, which consists of three
multimetric indices for diatoms (dASCI), soft bodied algae (sbaASCI),
and a hybrid (hASCI, respectively; S. Theroux, pers. comm.) had not
been completed during site scoring by algal experts. We selected the
hybrid ASCI (hASCI) as the index to compare with algal BCG level as-
signment results because of its performance relative to the other two
algal indices (S. Theroux, pers. comm.).

Biogeographic data based on GIS analysis was also provided and
included biological regions, climate, watershed area, geology, predicted
background conductivity and other predicted background water quality
and geological characteristics (Olson and Hawkins, 2012). These were
displayed during the BCG level assignment process to help experts set
their expectations for organismal presence and abundance. The format
for the BCG level assignment exercises was standardized to show all
biological and physical data together for each sample (SI Fig. 1).

Variables related to stress or human activity were compiled and
used for site selection, stressor-response analysis, and post hoc evalua-
tion, but were not displayed to experts during the sample BCG level
assignment process. They included land use, road density, mines, dams,
and field data, including chemistry and physical habitat. Water chem-
istry included specific conductivity, chloride, total nitrogen (TN), total
phosphorus (TP), and pH in addition to several less common measures.
Physical habitat was not available for all sites, but included dominant
substrate, habitat complexity, riparian vegetation, shading, and channel
morphology (SWAMP, 2018, Accessed on January 22, 2020).

2.5. Assignment of samples to BCG levels

Under typical BCG model development (e.g., Hausmann et al., 2016;
Gerritsen et al., 2017), open discussions occur among experts during
the process of sample BCG level assignment. This open discussion might
allow for limited bias to influence ratings if some experts are perceived
to be more qualified or are more persuasive than others. To reduce this
bias, BCG development for California wadeable streams was based on a
“Delphi” approach, which uses independent expert interpretation of
sample information followed by reconciliation and discussion to arrive
at consensus on assignment of a BCG level (Nair et al., 2011).

During the first round of BCG level assignments, experts worked
independently and anonymously to evaluate sites, using BCG level de-
finitions (Fig. 1), taxa lists, taxa attribute summaries, and site char-
acteristics not subject to human disturbance. The latter included ecor-
egional information, collection date, catchment area, elevation, water
temperature, precipitation and other predicted background water
quality and geological characteristics important in understanding ex-
pectations for taxa (Olson and Hawkins, 2012) (e.g., SI Fig. 1). Excluded
from site information reviewed by experts were site locations, stressor
information (land use, pollutant concentration, and habitat assess-
ments), and existing biological assessment scores.

After this first round, sample ratings were reviewed; ratings were
considered in agreement if no more than three of nine macro-
invertebrate experts and one of five algal experts rated a sample at one
level above or below that of the other experts. For samples in agree-
ment, the majority expert BCG level assignment was used as the con-
sensus for the sample. For all samples with divergent scores (i.e.,
greater than 1 level difference) among experts, a second-round re-
conciliation process was applied.

For reconciliation, samples were anonymously presented to the
experts with the independently written scoring rationale of each expert.
After considering their colleagues rationale, experts publicly shared

their second-round BCG level assignments, which may have changed
towards the initial median, changed towards an extreme BCG level
assignment as a result of convincing or previously unrecognized data
interpretation, or not changed at all.

After the second-round voting (the re-vote), a set of rules were ap-
proved by experts to make a final consensus BCG level assignment for a
sample from potentially disparate assignments. The final level for these
samples was the most common one assigned (i.e., the mode) and, if
there was a tie, the mid-value was selected and rounded down (i.e., to
the lower BCG level). Because there were 9 macroinvertebrate experts,
the median level assignment was selected. Algal experts allowed
themselves to assign BCG levels for each sample in “core” or “qualified”
levels, where core referred to BCG levels 1–6 and qualified indicated
conditions somewhat better (+) or worse (−) than the core. Therefore,
each algal BCG level had three possible ratings (e.g., 3−, 3, or 3+).
Algal samples were ultimately given a core value BCG level assignment
based on the decision rules above.

2.6. Relating BCG levels to numeric index values

The BCG levels assigned to the approximately 250 samples
throughout California were related to existing CSCI and hASCI bioas-
sessment indices for the same samples graphically and statistically. Box
plots of index values by BCG level were made to visually compare the
relationship between index scores and BCG level. Similar comparisons
classified by natural variables (elevation, watershed area, temperature
and precipitation) and PSA regions were made to review the extent to
which relationships between responses were either universal or might
be context dependent.

Proportional-odds logistic regression modeling was used to estimate
ranges of index values that are likely to fall within each BCG level (polr
package in R, R Core and Team., 2016). Proportional-odds modeling is
an ordinal logistic regression model that allows illustration of the points
at which an index is more likely to be associated with one BCG level in
comparison to all other levels (Agresti, 2002; Venables, 2002).

Box plots of BCG scores with TN, TP, specific conductance, and
percent agricultural/urban landuse were examined to verify BCG re-
sponse to stressor gradients.

2.7. BCG narrative development

A narrative description for each BCG level was created to commu-
nicate the ecological characteristics recognized by the experts, and
generally paralleled the original descriptive definitions for the levels
(United States Environmental Protection Agency (USEPA), 2016). The
rationale for assigning samples to BCG levels was explored at several
points in the BCG scoring process. In training discussions, the experts
were asked to conceptually characterize the best biological conditions
possible or observable in California so that all experts had an agreed
upon benchmark. These conceptual characterizations were generally
narrative and qualitative statements of taxon richness, biomass or
abundance of certain types, and occurrence of indicator taxa for BCG
levels 1 and 2. Effects of naturally occurring stressors on biological
conditions were also discussed, recognizing that expectations are de-
pendent on environmental setting due to variability in background
natural stressors, the timing of sample collection, or the confounding
(or compounding) of natural and anthropogenic stressors. During the
sample scoring process, experts again wrote and discussed their ratio-
nale for assigning each sample to a BCG level. The rationale included
general qualitative comparisons, qualitative and quantitative expecta-
tions based on attribute and taxonomic trait metrics, and expectations
for indicator taxa. As the evidence built for assignments at each level,
the group came to an agreement regarding general narrative descrip-
tions for each BCG level. This agreement was captured in narrative
statements compiled through expert review and consensus.
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3. Results

3.1. Taxa attribute assignments

There were 769 invertebrate taxa, 546 diatom taxa, and 419 soft
algal taxa considered by the expert panels. Of these, 92%, 77%, and
37% of taxa, respectively, were assigned to taxa attribute levels. This
process took most of the first workshop (2 days), in addition to the time
required by facilitators to prepare the supporting analyses (approxi-
mately 1 week). Attributes were not assigned (NA) for taxa that oc-
curred in<10 samples, were unfamiliar to the experts, or were of
ambiguous taxonomic resolution. Most taxa (77%, 68%, and 69% for
BMI, diatoms, and soft-bodied algae, respectively) were assigned to taxa
attributes III and IV, the sensitive and moderately tolerant categories
(Table 2). There were relatively few taxa in attributes I and VI (the
historically documented, sensitive, long-lived or regionally endemic
and the non-native or intentionally introduced taxa attributes, respec-
tively).

3.2. Sample ratings

In the first round of ratings, assignments were generally more
consistent among experts for BMI than algae but both expert groups
achieved good consensus during reconciliation. For BMI, most in-
dividual BCG assignments (81%) were within 0.5 BCG level of the
median or majority assignment and 95% were within 1 BCG level. After
the second-round voting of all macroinvertebrate samples, 78% were
within 0.5 level and 100% within 1 level (SI Fig. 1). For the algae, 51%
of independent ratings agreed with the median BCG level assignment
for each sample during the first round of review. In the consensus da-
taset, 57% of ratings were the same as the median. A total of 82% of
ratings were within 1/3 of the median (no more than a + or – differ-
ence), and 94% of ratings were within 2/3 of the median. Among the
five algal experts, only 6% of the individual ratings differed from the
median by a whole BCG level or more. In the samples with some dis-
crepancy, 38% of ratings were the same as the median. Following the
second-round voting, expert agreement with the median increased to
50% of samples. Of the 85 samples that required reconciliation to arrive
at consensus, 11 samples showed a change in median ratings of more
than 1/3 level (e.g. the difference between 3 and 3+) between rounds.

For both BMI and algae, assignments were roughly evenly dis-
tributed among the intermediate BCG levels, with few assigned to Level
1 or 6; this pattern was more pronounced for algae than for BMI,
especially sites where both assemblages were sampled (Table 3). Of the
264 macroinvertebrate samples rated, 239 samples were assigned to
BCG levels 2 through 5, in almost equal proportions (Fig. 4). Few sites
were assigned to BCG levels 1 and 6,< 20% of the average of those
identified to levels 2 through 5. Of the 236 algal samples with hASCI
scores that were assigned a BCG level, most were assigned to BCG levels
3 and 4, in equal proportions (Fig. 4). Almost equal numbers of sites
were assigned to levels 2 and 5, though less than half of those in levels 3
and 4. Only 1 sample was assigned to level 6 and no level 1 samples
were identified.

Although assignments to BCG levels were roughly even at the sta-
tewide level, different patterns were evident in certain regions (e.g.,
Fig. 5). For example, most samples in the Central Valley (a heavily
agricultural region with few undeveloped areas) were assigned to Level
4 or 5 by BMI experts (30 of 39) and by algae experts (26 of 37), and
only 4 algal and no BMI samples were assigned lower than 3. In con-
trast, experts assigned more samples to Level 3 or lower (58 of 75 for
BMI and 58 of 66 for algae) than to Level 4 or higher in the largely
forested Sierra Nevada and North Coast regions.

3.3. Relating BCG levels to the CSCI and hASCI

Bioassessment index scores (i.e., CSCI and hASCI) declined with Ta
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BCG level (Spearman rank order correlations p < 0.05, Fig. 4). There
was less difference in the distribution of CSCI scores between levels 1
and 2 than between other levels, even though most adjacent level in-
terquartile ranges overlapped somewhat. There was a gap between in-
terquartile ranges from levels 3 to 4 and between 5 and 6. For macro-
invertebrate samples, the relationship between the BCG levels and the
CSCI appears to be robust across PSA regions, except for the South
Coast, where CSCI scores were consistently higher in BCG levels than in
other regions (Fig. 5). Within BCG levels 3 and 4, CSCI scores among
Desert Modoc samples were also generally higher than those from other
PSA regions. Comparison of CSCI index scores to BCG level using the
proportional odds model showed that CSCI values greater than 1.0 were
more likely to be BCG level 2 or 1 than any other level. Furthermore,
scores below 0.3 were more likely to be within BCG level 6. It is worth
noting that the CSCI and hASCI indices are ratios, with an average re-
ference sample population mean of 1. Samples with greater species
richness and more sensitive taxa than expected on average can receive a
score of 1 or greater. The CSCI treats these scores as part of the natural
variability, yet BCG experts treated this excess richness and proportion
sensitive taxa as meaningful differences in BCG levels. According to the
proportional odds model, the highest probability that samples would be
assigned BCG levels 3, 4, and 5 occurred when sample CSCI scores were
approximately 0.90, 0.65, and 0.40, respectively.

hASCI scores similarly declined with increasing BCG levels, but not
as systematically as CSCI scores (Spearman rank order correlations
p < 0.05, Fig. 4). Compared to macroinvertebrates, the algal BCG
levels appear to be somewhat compressed. BCG levels 2 and 3 over-
lapped substantially. At BCG levels greater than 3, scores declined,
except in level 6 which had only 1 sample assigned to it. Interquartile
ranges were generally similar across BCG levels. Across regions, index
score distributions declined with BCG scores in Chaparral, Central

Valley, Desert-Modoc, South Coast, and Sierra Nevada across BCG le-
vels 2–5 but were relatively similar for the North Coast (Fig. 5). For
hASCI, values above 0.90 are more likely to be BCG level 3 or 2,
whereas values below 0.10 are likely to be 6 (Fig. 6). Again, according
to the proportional odds model, the highest probability that samples
would be assigned BCG levels 4 and 5 occurred at hASCI scores of ap-
proximately 0.70 and 0.30, respectively.

Except for algal BCG and watershed area, both assemblage BCG
levels were significantly (Spearman rank correlation p < 0.05) cor-
related with environmental settings (Fig. 7) and stressor/human ac-
tivity gradients (Fig. 8). BMI BCG scores increased in larger watersheds
and BCG level assignments for both assemblages decreased with ele-
vation and precipitation and increased with temperature. These asso-
ciations with environmental factors might be driven by underlying
stressors, which are likely greater at lower elevations in California,
reflecting greater agricultural and urban development. Nutrient con-
centrations, conductivity, and land cover disturbance are higher in sites
with BCG levels 4, 5, and 6 scores when compared to conditions in sites
with lower BCG scores (levels 1–3) (Fig. 8).

3.4. Narrative BCG level descriptions for the biological assemblages

The narratives of sensitivity and tolerance, embodied in respective
decisions for taxa attribute assignments, and the information on taxon
presence, absence and abundance were recorded and refined by each
group of experts. These represented revised BCG descriptions for
California streams, attempting as much as possible to indicate region
specific changes (SI Table 2). The different expert groups also at-
tempted to record some of the specific taxonomic distinctions between
BCG levels as reflected in presence, absence, and abundance.

4. Discussion

The BCG model for California’s wadeable streams integrates bioas-
sessment tools into management programs by providing an easily un-
derstood way to interpret and communicate statistically complex nu-
meric representations of stream biological condition, namely the
bioassessment index scores. This addresses a major challenge in raising
appreciation for bioassessment efforts: putting data into a meaningful
context for anyone interested in ecological response or in explaining the
benefits of (often expensive) remediation efforts to non-technical au-
diences (Poikane et al., 2016). By linking index scores to a BCG model,
we create new opportunities to engage with audiences (both the general

Table 3
Correspondence matrix of BMI and algal BCG expert site scores for the 194
samples in common. Shaded cells are one to one correspondence.

Algal BCG Level Assignments BMI BCG Level Assignments

Levels 1 2 3 4 5 6
1
2 17 9 1
3 3 24 21 12 6
4 3 12 20 33 7
5 3 13 10

Fig. 4. Distributions of CSCI and hASCI values by BCG levels. Boxes show medians (black squares), quartiles (boxes), and non-outlier extremes (whiskers). Individual
sample values are shown and sample sizes are given in parenthese above the boxes. The horizontal hatched line indicates a CSCI value of 0.79, the 10th percentile of
reference site scores.
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public as well as agency staff) that may lack familiarity with many of
the concepts underpinning numeric bioassessment indices and find the
technical and conceptual complexity of the tools a potential barrier to
their adoption or use.

California wadeable stream BCG models showed close agreement
among experts within each assemblage. High agreement among experts
has also been seen in BCG exercises conducted elsewhere in North
America (Hausmann et al., 2016; Gerritsen et al., 2017) and with other
expert processes, including: the evaluation of marine benthic in-
vertebrates (Weisberg et al., 2008; Teixeira et al., 2010), marine sedi-
ment quality (Bay et al., 2007; Bay and Weisberg, 2012), and fecal
contamination (Cao et al., 2013). BCG levels determined by the experts
differentiated BMI and algal condition along gradients of TN and TP,
specific conductivity, and agricultural and urban land use, all of which
reflect common stressors associated with the ambient human dis-
turbance gradients of these regions (California Surface Water Ambient
Monitoring Program (SWAMP), 2015). Our modification of the typical
BCG model development included incorporation of a modified Delphi
approach in which first round BCG scoring and revision was kept
anonymous. This helped reduce bias from strong individual expert pa-
nelist opinion (Nair et al., 2011) compared to previous applications of
BCG model development.

Several states in the USA have developed expert-driven BCG models

to support biological threshold selection based on percentiles of re-
ference population index values; e.g., Minnesota, where BCG models
have supplemented state-supported bioassessment indices for threshold
development (Gerritsen et al., 2017). California has developed sound
monitoring tools to measure biological condition in streams, has a peer-
reviewed index for macroinvertebrates (CSCI, Mazor et al., 2016) and
recently developed one for algae (ASCI, S. Theroux, pers. comm.). The
CSCI has been widely implemented for reporting waterbody status,
evaluating restoration, and in wastewater and stormwater permitting.
In California, BMI and Algae BCG level 1–6 narratives can facilitate
communication among the Water Board and public stakeholders by
describing the implications of statistically based thresholds and pro-
viding alternatives in terms of specific loss of structure and function
(Davies and Jackson, 2006). For example, the 10th percentile reference
of CSCI (0.79), the preferred target to protect biological integrity in the
proposed San Diego Regional Water Board bio-objectives policy (San
Diego Regional Board, 2020), corresponds to BMI BCG level 3 (Fig. 4),
in which anticipated changes include: “some changes in structure due
to loss of some rare native taxa; shifts in relative abundance of taxa,
although sensitive–ubiquitous taxa are common and abundant; eco-
system functions are fully maintained through redundant attributes of
the system” (SI Table 2). This narrative provides the public a descrip-
tion of the biological condition protected at this reference percentile.

Fig. 5. CSCI and hASCI distributions in relation to final BCG levels by PSA region. Boxes show medians, quartiles (boxes), and non-outlier extremes (whiskers).

Fig. 6. Proportional odds diagram relating BCG levels to the CSCI (left) and hASCI (right). Curves represent the modeled proportion of expert ratings that would be
expected for a sample with a given CSCI/hASCI score. The points above the curve reflect actual ratings, with marker size indicating relative frequency and color
indicating BCG level corresponding to the curves.
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Fig. 7. Distributions of selected environmental variables in relation to macroinvertebrate and algal final BCG levels. Variables include watershed area, site elevation,
modeled annual average site temperature, and modeled annual average site precipitation. Boxes show medians (squares) and intra-quartile ranges.

Fig. 8. Distributions of total nitrogen, total phosphorus, specific conductivity, percent agricultural land cover and percent urban land cover (2011) in site catchments
by final BCG levels. Boxes show medians and intra-quartile ranges.
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The consensus BCG levels assigned by the expert panels were in
concordance with the CA bioassessment index scores (strongly with the
CSCI, but also with the hASCI). This is not surprising given that the BCG
level assignments are derived from a subset of the same monitoring
program dataset, developed using a uniform set of protocols, and re-
presenting a similar range of conditions (Davies and Jackson, 2006;
Mazor et al., 2016). The primary difference being that the BCG uses
expert knowledge rather than statistical predictions to infer deviation
from the range of natural variability (United States Environmental
Protection Agency (USEPA), 2016). Each approach has its advantages
and together they can be considered complementary for assessment and
threshold setting. Bioassessment indices, particularly those based on O/
E approaches, can account for some site-specific variability in natural
gradients and thus minimize potential biases in scores among ecor-
egions (Hawkins et al., 2010). The level of natural variability inherent
in states as large and as topographically diverse as California may have
exceeded the experts’ ability to account for such high variability during
the scoring process. Statistically-based bioassessment indices have been
criticized for being ambiguous at the index level and for arbitrarily
combining metrics (Suter, 1993), problems that are not inherent in
expert derived models (Gerritsen et al., 2017). Here, the correspon-
dence between BMI and algal BCG and their corresponding indices may
reduce these concerns. BCG levels may be better able to resolve
meaningful differences at the extremes of the disturbance gradient,
which indices sometimes poorly discern. They can certainly be used to
describe the ecological conditions and consequences of sites in those
settings. This may be particularly useful for states considering man-
agement options such as tiered aquatic life uses (Yoder and Rankin,
1995a,b; Davies and Jackson, 2006). This clearer resolution of extremes
was evident in the comparison of BCG scoring to the CSCI more than for
the hASCI.

BCG levels based on BMI showed broad distribution across the en-
tire range of CSCI scores, indicating greater discrimination, whereas
algal BCG levels were more compressed within a subset of the hASCI’s
scoring range. This occurred because few algae taxa were designated as
taxa attribute I and none as attribute VI indicators, suggesting a lim-
itation in information about the algal taxa to reliably characterize
specialist or exotic taxa (Table 2). Moreover, no algal experts assigned
sites to BCG level 1 and only 1 to level 6. This trend has been observed
in previous algal BCG efforts as well, including the New Jersey diatom
BCG (Charles et al., 2019) where no sites were assigned to levels 1 and
6, and a combined Mid-Atlantic region algal BCG effort in which only a
handful of algal taxa received a BCG Level 1 or Level 6 assignment
(Hausmann et al., 2016). The under representation of sites classified as
BCG Level 1 and 6 using algae may be due to a variety of factors in-
cluding: differential responses of algae to stress, more tolerance in
general among algae, incomplete autecological understanding of algal
taxa, incompletely describing the range of least to most disturbed
conditions for the algae, or bias associated with the BCG process in
scoring algal assemblages. The latter includes thinking that endemic or
non-native taxa be required to be present to score in levels 1 or 6 (i.e.,
confounding BCG taxa attributes with scoring levels). There was some
feeling that this also influenced BMI scoring and is an area for greater
exploration within the BCG development community. Historical im-
pacts and natural variability may constrain assigning level 1 scores, but
some experts felt there should have been more sites meeting the spirit of
level 1 than were assigned.

Although the BCG framework developed in this study complements
bioassessment indices as a communication and decision support tool for
policy development, we recommend some guidelines for its use in
supporting management decisions in California. First, unlike in other
states where a quantitative logic model was developed from expert
decisions to provide an assessment tool to replicate expert scoring for
new samples (e.g. Gerritsen et al., 2017), we did not develop our CA
BCG framework as a substitute or alternative biological scoring tool to
standardized indices already incorporated into management programs,

like the CSCI or ASCI. This was primarily because of considerable op-
position within the management community to adopting a BCG model
for California over fears that it would undermine efforts to standardize
assessments and create conflict over inconsistent or biased selection of
indices. Emphasizing that the main use of the BCG framework is as a
decision support tool for communication is essential in assuaging this
opposition.

Second, the BCG should not be used to define the highest ecological
potential for any site. For example, if a site biological index score falls
within BCG level 4, its potential BCG level could be significantly higher
(i.e., 1–4), but the site may also be constrained by factors that are
difficult to control such as urban development. So, the restorability of a
site (i.e., the feasibility of attaining a higher BCG level) cannot be in-
ferred from the score alone.

Third, for many stakeholders, the concept of a BCG model is linked
to that of tiered uses, as this has been a common application (Davies
and Jackson, 2006; Gerritsen et al., 2017). However, tiered biological
objectives were not a considered application in California, which led to
confusion as to the intended use of the model. However, as we de-
monstrate, a BCG model has potential value to stream biological as-
sessment outside of setting tiered objectives. Communicating this use of
the BCG model to stakeholders was important.

The BCG supports establishment of biological integrity water quality
goals in California wadeable streams by providing an understanding of
the ecological implications of different index thresholds. The BCG re-
sults can also help communicate to stakeholders the appropriateness of
specific state biological index values as valid representations of biolo-
gical integrity goals. Both needs are aided by the BCG descriptions of
biological structure and function protected or lost for different values of
frequently used indices.
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