13 research outputs found

    Discovery of the Optical Transient of GRB 990308

    Get PDF
    The optical transient of the faint gamma-ray burst GRB 990308 was detected by the QUEST camera on the Venezuelan 1 m Schmidt telescope starting 3.28 hr after the burst. Our photometry gives V= 18.32 ± 0.07, R = 18.14 ± 0. 06, B =18.65, and R=18.22 ± 0.05 for times ranging from 3.28 to 3.47 hr after the burst. The colors correspond to a spectral slope of close to f ∝ v^1/3 . Within the standard synchrotron fireball model, this rquires that the external medium be less dense than 10^4 cm^-3, the electrons contain more than 20% of the shock energy, and the magnetic field energy be less than 24% of the energy in the electrons for normal interstellar or circumstellar densities. We also report upper limits of V \u3e 12.0 at 132 s (with LOTIS), V \u3e 13.4 from 132 to 1029 s (with LOTIS), V \u3e 15.3 at 28.2 minutes (with Super-LOTIS), and a 8.5 GHz flux of less than 114 μJy at 110 days (with the Very Large Array). Wisconsin-Indiana-Yale-NOAO 3.5 m and Keck 10 m telescopes reveal this location to be empty of any host galaxy to R \u3e 25.7and K \u3e 123.3. The lack of a host galaxy likely implies that it is either substantially subluminous or more distant than a redshift of ∼1.2

    Discovery of the Optical Transient of the Gamma Ray Burst 990308

    Full text link
    The optical transient of the faint Gamma Ray Burst 990308 was detected by the QUEST camera on the Venezuelan 1-m Schmidt telescope starting 3.28 hours after the burst. Our photometry gives V=18.32±0.07V = 18.32 \pm 0.07, R=18.14±0.06R = 18.14 \pm 0.06, B=18.65±0.23B = 18.65 \pm 0.23, and R=18.22±0.05R = 18.22 \pm 0.05 for times ranging from 3.28 to 3.47 hours after the burst. The colors correspond to a spectral slope of close to fνν1/3f_{\nu} \propto \nu^{1/3}. Within the standard synchrotron fireball model, this requires that the external medium be less dense than 104cm310^{4} cm^{-3}, the electrons contain >20> 20% of the shock energy, and the magnetic field energy must be less than 24% of the energy in the electrons for normal interstellar or circumstellar densities. We also report upper limits of V>12.0V > 12.0 at 132 s (with LOTIS), V>13.4V > 13.4 from 132-1029s (with LOTIS), V>15.3V > 15.3 at 28.2 min (with Super-LOTIS), and a 8.5 GHz flux of <114μJy< 114 \mu Jy at 110 days (with the Very Large Array). WIYN 3.5-m and Keck 10-m telescopes reveal this location to be empty of any host galaxy to R>25.7R > 25.7 and K>23.3K > 23.3. The lack of a host galaxy likely implies that it is either substantially subluminous or more distant than a red shift of 1.2\sim 1.2.Comment: ApJ Lett submitted, 5 pages, 2 figures, no space for 12 coauthor

    Polarised Quark Distributions in the Nucleon from Semi-Inclusive Spin Asymmetries

    Get PDF
    We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments 01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, 01Δdv(x)dx=0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and 01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions 01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.Comment: 17 page

    Discovery of the optical transient of GRB 990308

    Get PDF
    The optical transient of the faint gamma-ray burst GRB 990308 was detected by the QUEST camera on the Venezuelan 1 m Schmidt telescope starting 3.28 hr after the burst. Our photometry gives V= 18.32 ± 0.07, R = 18.14 ± 0.06, B = 18.65 ± 0.23, and R = 18.22 ± 0.05 for times ranging from 3.28 to 3.47 hr after the burst. The colors correspond to a spectral slope of close to fv ∝ v1/3. Within the standard synchrotron fireball model, this requires that the external medium be less dense than 104 cm-3, the electrons contain more than 20% of the shock energy, and the magnetic field energy be less than 24% of the energy in the electrons for normal interstellar or circumstellar densities. We also report upper limits of V \u3e 12.0 at 132 s (with LOTIS), V \u3e 13.4 from 132 to 1029 s (with LOTIS), V \u3e 15.3 at 28.2 minutes (with Super-LOTIS), and a 8.5 GHz flux of less than 114 μJy at 110 days (with the Very Large Array). Wisconsin-Indiana-Yale-NOAO 3.5 m and Keck 10 m telescopes reveal this location to be empty of any host galaxy to R \u3e 25.7 and K \u3e 23.3. The lack of a host galaxy likely implies that it is either substantially subluminous or more distant than a redshift of ∼1.2

    Supernova Interaction with a Circumstellar Medium

    Get PDF
    The explosion of a core collapse supernova drives a powerful shock front into the wind from the progenitor star. A layer of shocked circumstellar gas and ejecta develops that is subject to hydrodynamic instabilities. The hot gas can be observed directly by its X-ray emission, some of which is absorbed and re-radiated at lower frequencies by the ejecta and the circumstellar gas. Synchrotron radiation from relativistic electrons accelerated at the shock fronts provides information on the mass loss density if free-free absorption dominates at early times or the size of the emitting region if synchrotron self-absorption dominates. Analysis of the interaction leads to information on the density and structure of the ejecta and the circumstellar medium, and the abundances in these media. The emphasis here is on the physical processes related to the interaction.Comment: 22 pages, 7 figures, to appear as a Chapter in "Supernovae and Gamma-Ray Bursts," edited by K. W. Weiler (Springer-Verlag

    Polarised quark distributions in the nucleon from semi-inclusive spin asymmetries

    Get PDF
    We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031~GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10~GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments 01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) {\rm d}x = 0.77 \pm 0.10 \pm 0.08, 01Δdv(x)dx=0.52±0.14±0.09\int_0^1 \Delta d_v(x) {\rm d}x = -0.52 \pm 0.14 \pm 0.09 and 01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) {\rm d}x= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions 01xΔqv(x)dx\int_0^1 x \Delta q_v(x) {\rm d}x.We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments 01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, 01Δdv(x)dx=0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and 01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions 01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments 01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, 01Δdv(x)dx=0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and 01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions 01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments 01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, 01Δdv(x)dx=0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and 01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions 01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments 01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, 01Δdv(x)dx=0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and 01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions 01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0031 GeV 2 . Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q 2 =10 GeV 2 . The polarised u valence quark distribution, Δu v ( x ), is positive and the polarisation increases with x . The polarised d valence quark distribution, Δd v ( x ), is negative and the non-strange sea distribution, Δ q ̄ (x) , is consistent with zero over the measured range of x . We find for the first moments ∫ 0 1 Δu v (x) d x=0.77±0.10±0.08 , ∫ 0 1 Δd v (x) d x=−0.52±0.14±0.09 and ∫ 0 1 Δ q ̄ (x) d x=0.01±0.04±0.03 , where we assumed Δ u ̄ (x)=Δ d ̄ (x) . We also determine for the first time the second moments of the valence distributions ∫ 0 1 xΔq v (x) d x

    DISCOVERY OF THE OPTICAL TRANSIENT OF GRB 990308

    No full text
    ABSTRACT The optical transient of the faint gamma-ray burst GRB 990308 was detected by the QUEST camera on the Venezuelan 1 m Schmidt telescope starting 3.28 hr after the burst. Our photometry gives , V = 18.32 ‫ע‬ 0.07 , , and for times ranging from 3.28 to 3.47 hr after the R = 18.14 ‫ע‬ 0.06 B = 18.65 ‫ע‬ 0.23 R = 18.22 ‫ע‬ 0.05 burst. The colors correspond to a spectral slope of close to . Within the standard synchrotron fireball f ∝ n n model, this requires that the external medium be less dense than 10 4 cm Ϫ3 , the electrons contain more than 20% of the shock energy, and the magnetic field energy be less than 24% of the energy in the electrons for normal interstellar or circumstellar densities. We also report upper limits of at 132 s (with LOTIS), V 1 12.0 V 1 13.4 from 132 to 1029 s (with LOTIS), at 28.2 minutes (with Super-LOTIS), and a 8.5 GHz flux of less V 1 15.3 than 114 mJy at 110 days (with the Very Large Array). Wisconsin-Indiana-Yale-NOAO 3.5 m and Keck 10 m telescopes reveal this location to be empty of any host galaxy to and . The lack of a host R 1 25.7 K 1 23.3 galaxy likely implies that it is either substantially subluminous or more distant than a redshift of ∼1.2

    The polarized double cell target of the SMC

    Get PDF
    Adams D, Adeva B, Arik E, et al. The polarized double cell target of the SMC. Nucl.Instrum.Meth. A. 1999;437(1):23-67.The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials - butanol, ammonia, and deuterated butanol - with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses, the accuracies achieved were between 2.0% and 3.2%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, construction and performance of the target are reviewed, (C) 1999 Elsevier Science B.V. All rights reserved

    The Spin dependent structure function g(1) (x) of the proton from polarized deep inelastic muon scattering

    No full text
    corecore