2,432 research outputs found

    Millisecond accuracy video display using OpenGL under Linux

    Get PDF
    To measure people’s reaction times to the nearest millisecond, it is necessary to know exactly when a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this may be done within X Windows using the OpenGL rendering system. A test of this system is reported that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively large errors in measuring the display time

    A PC parallel port button box provides millisecond response time accuracy under Linux

    Get PDF
    For psychologists, it is sometimes necessary to measure people's reaction times to the nearest millisecond. This article describes how to use the PC parallel port to receive signals from a button box to achieve millisecond response time accuracy. The workings of the parallel port, the corresponding port addresses, and a simple Linux program for controlling the port are described. A test of the speed and reliability of button box signal detection is reported. If the reader is moderately familiar with Linux, this article should provide sufficient instruction for him or her to build and test his or her own parallel port button box. This article also describes how the parallel port could be used to control an external apparatus

    First Results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS): Kinematics of Lensed Galaxies at Cosmic Noon

    Get PDF
    We present the first results of the KMOS Lens-Amplified Spectroscopic Survey (KLASS), a new ESO Very Large Telescope (VLT) large program, doing multi-object integral field spectroscopy of galaxies gravitationally lensed behind seven galaxy clusters selected from the HST Grism Lens-Amplified Survey from Space (GLASS). Using the power of the cluster magnification we are able to reveal the kinematic structure of 25 galaxies at 0.7z2.30.7 \lesssim z \lesssim 2.3, in four cluster fields, with stellar masses 8log(M/M)118 \lesssim \log{(M_\star/M_\odot)} \lesssim 11. This sample includes 5 sources at z>1z>1 with lower stellar masses than in any previous kinematic IFU surveys. Our sample displays a diversity in kinematic structure over this mass and redshift range. The majority of our kinematically resolved sample is rotationally supported, but with a lower ratio of rotational velocity to velocity dispersion than in the local universe, indicating the fraction of dynamically hot disks changes with cosmic time. We find no galaxies with stellar mass <3×109M<3 \times 10^9 M_\odot in our sample display regular ordered rotation. Using the enhanced spatial resolution from lensing, we resolve a lower number of dispersion dominated systems compared to field surveys, competitive with findings from surveys using adaptive optics. We find that the KMOS IFUs recover emission line flux from HST grism-selected objects more faithfully than slit spectrographs. With artificial slits we estimate slit spectrographs miss on average 60% of the total flux of emission lines, which decreases rapidly if the emission line is spatially offset from the continuum.Comment: Accepted for publication in Ap

    New mobilities across the lifecourse: A framework for analysing demographically-linked drivers of migration

    Get PDF
    Date of acceptance: 17/02/2015Taking the life course as the central concern, the authors set out a conceptual framework and define some key research questions for a programme of research that explores how the linked lives of mobile people are situated in time–space within the economic, social, and cultural structures of contemporary society. Drawing on methodologically innovative techniques, these perspectives can offer new insights into the changing nature and meanings of migration across the life course.Publisher PDFPeer reviewe

    Numerical model for granular compaction under vertical tapping

    Full text link
    A simple numerical model is used to simulate the effect of vertical taps on a packing of monodisperse hard spheres. Our results are in agreement with an experimantal work done in Chicago and with other previous models, especially concerning the dynamics of the compaction, the influence of the excitation strength on the compaction efficiency, and some ageing effects. The principal asset of the model is that it allows a local analysis of the packings. Vertical and transverse density profiles are used as well as size and volume distributions of the pores. An interesting result concerns the appearance of a vertical gradient in the density profiles during compaction. Furthermore, the volume distribution of the pores suggests that the smallest pores, ranging in size between a tetrahedral and an octahedral site, are not strongly affected by the tapping process, in contrast to the largest pores which are more sensitive to the compaction of the packing.Comment: 8 pages, 15 figures (eps), to be published in Phys. Rev. E. Some corrections have been made, especially in paragraph IV

    Drug review process advancement and required manufacturer and contract research oraganization responses

    Get PDF
    \ua9 2024 The Japanese Society of Toxicologic Pathology.The United States Senate passed the “FDA Modernization Act 2.0.” on September 29, 2022. Although the effectiveness of this Bill, which aims to eliminate the mandatory use of laboratory animals in new drug development, is limited, it represents a significant trend that will change the shape of drug applications in the United States and other countries. However, pharmaceutical companies have not taken major steps towards the complete elimination of animal testing from the standpoint of product safety, where they prioritize patient safety. Nonetheless, society is becoming increasingly opposed to animal testing, and efforts will be made to use fewer animals and conduct fewer animal tests as a natural and reasonable response. These changes eventually alter the shape of new drug applications. Based on the assumption that fewer animal tests will be conducted or fewer animals will be used in testing, this study explored bioinformatics and new technologies as alternatives to compensate for reduced information and provide a picture of how future new drug applications may look. The authors also discuss the directions that pharmaceutical companies and nonclinical contract research organizations should adopt to promote the replacement, reduction, and refinement of animals used in research, teaching, testing, and exhibitions
    corecore