

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap
This paper is made available online in accordance with
publisher policies. Please scroll down to view the document
itself. Please refer to the repository record for this item and our
policy information available from the repository home page for
further information.
To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Neil Stewart
Article Title: Millisecond accuracy video display using OpenGL under
Linux
Year of publication: 2006
Link to published version: http://brm.psychonomic-
journals.org/content/38/1/142.full.pdf+html
Publisher statement: None

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/105388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap

B134 Millisecond Accuracy Video 1

Running Head: LINUX VIDEO DISPLAY

Millisecond Accuracy Video Display Using OpenGL Under Linux

Neil Stewart

University of Warwick, England

Stewart, N. (2006). Millisecond accuracy video display using OpenGL under Linux. Behavior

Research Methods, 38, 142-145.

Neil Stewart

Department of Psychology

University of Warwick

Coventry

CV4 7AL

England

+44 24 7657 3127

neil.stewart@warwick.ac.uk

B134 Millisecond Accuracy Video 2

Abstract

To measure people's reaction times to the nearest millisecond, it is necessary to know exactly

when a stimulus is displayed. This article describes how to display stimuli with millisecond

accuracy on a normal CRT monitor using a PC running Linux. A simple C program is

presented to illustrate how this may be done within X Windows using the OpenGL rendering

system. A test of this system is reported that demonstrates that stimuli may be consistently

displayed with millisecond accuracy. An algorithm is presented that allows the exact time of

stimulus presentation to be deduced, even if there are relatively large errors in measuring the

display time.

B134 Millisecond Accuracy Video 3

Millisecond Accuracy Video Display Using OpenGL Under Linux

In many psychology experiments, a stimulus is presented and the latency of a

participant's response is recorded. There are two key pieces of information that are required to

determine a participant's reaction time: the time that the stimulus was presented and the time

that the participant responded. I describe how to record responses with millisecond accuracy

under Linux in Stewart (2004). This article is concerned with presenting stimuli with

millisecond accuracy.

A Choice of Display Method

A standard cathode ray tube (CRT) monitor works by scanning a beam of electrons

over a phosphorus-coated screen. When the beam strikes the phosphorus, the phosphorus

fluoresces. The beam scans each row of pixels from left to right, beginning with the top row

and ending with the bottom row. The intensity of the beam is varied with location, to cause

the phosphorus to fluoresce with different intensity, allowing a picture to be built up over a

scan of the whole screen. The number of scans of the entire screen per second is called the

refresh rate.

Recently, liquid crystal displays (LCDs) have been introduced. These work quite

differently. When a voltage is applied to a liquid crystal, it changes its shape. Different shaped

crystals rotate the plane of polarized light by different extents. In an LCD, a layer of liquid

crystals is sandwiched between two orthogonal polariods. Unless the plane of the polarized

light is rotated in between the two polariods it cannot pass through them. By varying the

voltage applied to the liquid crystals in the sandwich, the degree of rotation of the plane of the

polarized light varies, allowing more or less light to pass through the LCD. By having a large

array of liquid crystal segments, each controlled independently, the amount of light passing

through different parts of the LCD can be controlled to create a picture. In thin film transistor

(TFT) LCD panels, a transistor and capacitor assembly for each pixel is used to maintain the

voltage across the liquid crystal between refreshes of the display.

B134 Millisecond Accuracy Video 4

Plant, Hammond, and Turner (2004) studied the performance of some CRT displays

and some TFT LCD displays, by measuring the time for the display to become visible (as

measured by a photodiode and oscilloscope apparatus). The CRTs tested reached full

brightness in less than 1 ms. However, the brightness of the LCDs tested changed very

slowly, taking 10 - 20 ms for the display to reach full brightness (i.e., to warm up), depending

on the display. Further, the LCD displays took 5 - 20 ms for the image to fade to the

background level of brightness on stimulus offset (i.e., to cool down).1 The point during the

warm-up time at which an image is detectable by a human observer and similarly the point

when it is no longer visible during the cool-down time is likely to vary with environmental

factors (e.g., ambient illumination, the brightness of other stimuli) and history (e.g., the

brightness of recent stimuli). Thus, Plant et al.'s study shows that LCD TFT displays are not

suitable for presenting stimuli with millisecond accuracy. Here I describe how to control a

CRT display with millisecond accuracy in Linux.

A Simple Linux Program2

The most commonly used graphics system under Linux is X Windows. X Windows

provides a graphical engine that is hardware independent and used across a large variety of

operating systems such as Mac OS X and Sun Solaris. Linux systems usually use a free

implementation of the X Windows standard called XFree86 (http://www.xfree86.org/). The X

Windows system performs windowing tasks, such as allocating new windows, moving them

around, and deciding when they need to be redrawn. In this simple program I have used the

OpenGL graphics library to draw into a new window that fills the entire screen. OpenGL is

also hardware independent and runs on many other operating systems. I used the Mesa3D

implementation of the OpenGL standard (http://www.mesa3d.org/).3

The complete C source code for the program is available from

http://www.warwick.ac.uk/staff/Neil.Stewart/. The program first creates a blank, borderless

window that fills the entire screen. This is done using X and OpenGL library functions. If you

B134 Millisecond Accuracy Video 5

would like more information than is provided by the man pages for these functions, consult

Nye (1992) and Woo, Neider, Davis, & Shreiner (1999). First, XOpenDisplay is used to open

a connection to the X Server and obtain server display information. Second, glXChooseVisual

is used to select, from all available visuals on the display, the type of visual that best meets a

minimum specification. Third, glXCreateContext is used to create a rendering context with

direct access to the video card. Fourth, a new window that fills the entire screen and has no

border is made using XCreateWindow. The attributes for this window are extracted from

those of the root window. Fifth, to display or map the window to the screen XMapWindow is

called followed by XIfEvent. XIfEvent waits for the window to be displayed before allowing

execution to proceed.

So far, a new window has been created with an OpenGL rendering context that

renders directly to the video card. Next, the details of the OpenGL system need to be

specified. The rendering context is selected with glXMakeCurrent, and the coordinate system

established with glViewport. OpenGL, which is a 3D rendering system, can be set to 2D by

setting the model and projection transforms to the identity matrix (by calling glMatrixMode

and glLoadIdentity) and calling glOrtho2D.

The final step is to hide the cursor. Unfortunately, to hide the cursor X Windows

requires the creation of a blank cursor using XCreatePixmapCursor by passing a blank pixmap

created with XCreateBitmapFromData as a parameter. The cursor is defined as the current

cursor using XDefineCursor. Together, all of these steps may seem rather lengthy, but they

will work on any X Windows System with OpenGL.

From this point, things are much more simple. The rendering context that the program

selects is a double buffered context. In double buffering, while the contents of one buffer are

being displayed, drawing takes place on the other buffer. When a glXSwapBuffers call is

made, the roles of the two buffers are reversed. The reversal is synchronized to the screen

retrace, so that the buffers are swapped while the beam is moving from the bottom right

B134 Millisecond Accuracy Video 6

corner at the end of a trace back to the top left corner for the beginning of the next. This

means that, if buffers are swapped every frame, there is one frame period (e.g., 10 ms at 100

Hz refresh rate) for drawing into a buffer. Because modern computers are are very fast, it is

possible to draw an awful lot in this time (cf. current computer games like Doom 3 and Half-

Life 2) depending on the processor and graphics card. There is no longer a need to buffer a

really large number of frames in advance (cf. only 5 years ago, Graves & Bradley, 1988a,

1988b; Myors, 1998, 1999; Tsai, 2001).

As an example, the following code fragment draws a red rectangle in the center of a

green screen.

glClearColor(0.0, 1.0, 0.0, 1.0);

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0,0.0,0.0);

glRecti(-100,-100,100,100);

glXSwapBuffers(display, window);

glFinish();

gettimeofday(time, (struct timezone *) 0);

The clear color is set with glClearColor (which takes red, green, blue, and alpha values) before

the screen is cleared by glClear. The drawing color is set to red by glColor3f (which takes red,

green, and blue values) and a rectangle is drawn with glRecti with the bottom left corner at

-100, -100 and the top right corner at 100, 100. The call to glXSwapBuffers swaps the

buffers, displaying the rectangle. The glFinish call ensures that all commands are complete

before it returns. Thus the call to gettimeofday sets the variable time to the time at which the

tracing of first frame containing the rectangle began.

A Test of Millisecond Accuracy

I conducted a simple test of the accuracy of the times recorded as above. I set up a

simple loop to alternate the screen colors on every retrace of the screen between black and

B134 Millisecond Accuracy Video 7

white, and recorded the time after every call to glXSwapBuffers and glFinish. If the times are

accurate, then the intervals between times should be exactly the refresh period.

The system I ran these tests on is a dual processor 1.4 MHz AMD Athlon with 256

MB of RAM with a PCI NVidia GeForce 2 MX with 32 MB of video RAM. I used the

Debian Woody GNU distribution with a 2.4.25-1-k7-smp Linux kernel, XFree86 4.1.0 and the

NVidia 1.0-5336 driver4 (and not the nv driver that comes with XFree86). The CRT monitor

was a Sony CPD-G220 Color Trinitron running with a refresh rate of 85 Hz. The following

source code was used to sample the time of 10,000 consecutive refreshes.

for(i=0; i<10000; i++) {

c=double(i%2);

glClearColor(c, c, c, 1.0);

glClear(GL_COLOR_BUFFER_BIT);

glXSwapBuffers(display, window);

glFinish();

gettimeofday(time[i], (struct timezone *) 0);

}

By alternating the color of the screen on alternate refreshes between black and white (using

the variable c), a photodiode apparatus that was connected to the screen could detect the

refreshes. During the test, no refreshes were missed (i.e., the screen color swapped every 1/85

s).

For a vertical refresh rate of 85 Hz, the period should be 11.765 ms. Figure 1 shows

the differences between the consecutive times recorded in the array time. Only 12 intervals

(about 1 in 1000) fell outside that range ± 0.05 ms from the expected value of 11.765 ms.

These cases occurred on the six occasions when there was a large gap between the calls to

glXSwapBuffers and glFinish and the call to gettimeofday. The large gap caused the preceding

inter-refresh interval to be overestimated and the following inter-refresh interval to be

B134 Millisecond Accuracy Video 8

underestimated by the same amount. The largest error was 5 ms. The very rare errors of up to

5 ms may not be of any concern, because they are so rare, but if they are, fortunately, they are

very easy to correct using the algorithm described below.

A second, more realistic test was also run. The duration of a white screen presented

for 1000 ms (i.e., 85 retraces at an 85 Hz refresh rate) was measured for each of 1000 trials.

The inter-trial interval was also 1000 ms, during which time a black screen was presented. The

total duration of the test was about half an hour. Across the 1000, trials the minimum recorded

display time was 999.734 ms and the maximum was 999.800 ms. This gives a total range of

only 0.066 ms for the stimulus durations, which is an accuracy of better than one tenth of a

ms.5

A Simple Correction

For a monitor driven at v Hz, the times of the beginnings of the refresh must all be 1 /

v s apart. By taking advantage of this fact, the exact time of stimulus retraces can be deduced,

providing the error in recording them is small compared to the refresh period 1 / v. This model

can be formalized in Equation 1.

ti = t0 + i / v (1)

where ti is the time (in s) of the ith retrace and i indexes the number of retraces since the first

at time t0. Suppose that one has recorded a series of retrace times rj (where j indexes the

number of recordings since t0) and that there is some noise in the recording that varies from

trial to trial, so that

rj = ti + �j (2)

where �j > 0 is the error in recording the time. From Equations 1 and 2, rj - t0 = i / v + � j. In

other words, apart from the error in recording the time, rj - t0 must be an integer multiple of

the refresh period 1 / v. Under the assumption that �j < 1 / v, then

i = Quotient[rj - t0 , 1 / v] (3)

where the function Quotient[. , .] gives the integer part of the division of the first parameter

B134 Millisecond Accuracy Video 9

by the second. That is, the retrace i on which the jth recording rj was made can be determined.

Once i is known, the exact time of the retrace i is given by Equation 1.

t0 is, however, not known exactly. But it can be estimated from the data. First,

construct the error term

error = (Mod[rj - t0, 1 / v])2 (4)

where the function Mod[. , .] returns the remainder after the first parameter is divided by the

second. Error is the squared deviation between the recorded time rj and the first preceding

modeled retrace time (the location of which is determined by t0). Second, average this term

over all of the refresh times recorded. Third, find the value of t0 for which this sum is a

minimum.

To test this algorithm, I have generated 1000 trials of artificial refresh data using

Equations 1 and 2 as follows. The retraces on which recordings were made (i.e., the is) were

generated by starting with a seed value of i = 0, and generating each subsequent value by

adding to the previous value an integer drawn at random from a uniform distribution of

integers between 1 and 20. In this way, the retraces recorded were irregularly spaced, as they

might be in an experiment where the inter-stimulus intervals depend on a participant's response

times. The noise �j was modeled as a log normal distribution with mean 2 ms and standard

deviation 2 ms. This standard deviation is 20 times greater than the variability observed in the

above practical test, and so this test is comparatively very tough. t0 was set to an arbitrary

value of 325 ms. In this way, 1000 simulated rjs were generated.

The average error (Equation 4) is plotted as a function of t0 in Figure 2. The function is

periodic, and has a minimum every 1 / v s. The minima immediately preceding r0 is t0. Once t0

is known, Equation 3 can be used to recover the numbers of the retraces (i.e., the is) upon

which the recordings were made. Substituting these is into Equation 1 allows the exact retrace

times to be calculated. As a check, the distribution of residuals (rj - ti) can be plotted. Figure

3A shows the distribution with t0 = 325. However, if an incorrect value for t0 is used, the

B134 Millisecond Accuracy Video 10

distribution becomes bimodal. Figure 3B illustrates this occurring when t0 = 315.

In summary, by taking advantage of the fact that retraces can only occur at certain

predefined times, noisy timing data can be cleaned up, providing a much better estimate of the

time at which a stimulus is displayed and eliminating trial-to-trial variability. Although the

Linux system described above almost always performed very accurately, this method allows

the very rare errors to be corrected.

Conclusion

In conclusion, a PC Linux system and a CRT monitor can be used to display stimuli

with millisecond accuracy.

B134 Millisecond Accuracy Video 11

References

Graves , R., & Bradley, R. (1988a). More on millisecond timing and tachistoscope

applications for the IBM PC. Behavior Research Methods, Instruments, & Computers,

20, 408-412.

Graves, R., & Bradley, R. (1988b). Millisecond timing on the IBM PC/XT/AT and PS/2: A

review of the options and correction for the Graves and Bradley algorithm. Behavior

Research Methods, Instruments, & Computers, 23, 377-379.

Finney, S. A. (2001). Real-time data collection in Linux: A case study. Behavior Research

Methods, Instruments, and Computers, 33, 167-173.

MacInnes, W. J., & Taylor, T. L. (2001). Millisecond timing on PCs and Macs. Behavior

Research Methods, Instruments, & Computers, 33, 174-178.

Myors, B. (1998a). The PC tachistoscope has 32 pages. Behavior Research Methods,

Instruments, & Computers, 30, 457-461.

Myors, B. (1999). The PC tachistoscope has 240 pages. Behavior Research Methods,

Instruments, & Computers, 31, 329-333.

Nye, A. (1992). Xlib programming manual (3rd ed.). Sebastopol, CA: O'Reilly.

Plant, R. P., Hammond, N., & Turner, G. (2004). Self-validating presentation and response

timing in cognitive paradigms: How and why. Behavior, Research Methods,

Instruments, & Computers, 36, 291-303.

Stewart, N. (2004). A PC parallel port button box provides millisecond response time

accuracy under Linux. Manuscript submitted for publication.

Tsai, J. L. (2001). A multichannel PC tachistoscope with high resolution and fast display

change capability. Behavioral Research Methods, Instruments, & Computers, 33,

524-531.

Woo, M., Neider, J., Davis, T., & Shreiner, D. (1999). OpenGL programming guide (3rd

ed.). Reading, MA: Addison Wesley.

B134 Millisecond Accuracy Video 12

Author Note

Neil Stewart, Department of Psychology University of Warwick.

I thank Dave Sleight for constructing the photodiode apparatus and James Adelman

and Matthew Roberts for sharing their Linux knowledge.

Correspondence concerning this article should be addressed to Neil Stewart,

Department of Psychology, University of Warwick, Coventry, CV4 7AL, UK. E-mail:

neil.stewart@warwick.ac.uk.

B134 Millisecond Accuracy Video 13

Footnotes

1Plant et al. (2003) also found that there was a delay of up to 50 ms between the time

that E-prime software was scheduled to display the image and the time the image began to

appear on the display.

2For a multitasking operating system (e.g., Linux, MacOS X, or MS Windows) to be

able to function with millisecond accuracy, one must prevent the program from being

interrupted and having its memory swapped to disc. An accurate timer is also required. Finney

(2001; see also MacInnes & Taylor, 2001; Stewart, 2004) describes how to ensure a Linux

program meets this standard.

3The OpenGL utility toolkit (GLUT) can be used to simplify the process of initializing

and opening new windows and controlling window events. In GLUT, buffers are swapped by

calling glutSwapBuffers, which in turn calls glXSwapBuffers.

4To ensure that buffers are swapped only during the vertical blanking period by

glXSwapBuffers, the environment variable __GL_SYNC_TO_VBLANK must be set to a

non-zero value. It is easy to spot when buffer swapping is not synchronized, because the

screen seems to "tear".

5The fact that the total display time was slightly less than 1000 ms indicates either that

the actual monitor refresh rate was slightly faster than 85 Hz or that the computer's clock is

running slightly slow. The clock on the test computer loses about 2.6 x 10-7 s per s, as

measured by the network time protocol software (http://www.ntp.org/).

B134 Millisecond Accuracy Video 14

Figure Caption

Figure 1. The distribution of inter-refresh intervals measured by a gettimeofday call after a

glXSwapBuffers and a glFinish.

Figure 2. Model error as a function of t0.

Figure 3. The distribution of residuals with t0 correct (A) and incorrect (B).

B134 Millisecond Accuracy Video 15

Figure 1

11.7 11.72 11.74 11.76 11.78 11.8
Inter-Refresh Interval�ms

0

200

400

600

800

1000

1200

1400

F
r
e
q
u
e
n
c
y

B134 Millisecond Accuracy Video 16

Figure 2

300 310 320 330 340 350
t0�ms

0

20

40

60

80

A
v
e
r
a
g
e

E
r
r
o
r

B134 Millisecond Accuracy Video 17

Figure 3

A

2 4 6 8 10
Residual�ms

0

20

40

60

80

100

F
r
e
q
u
e
n
c
y

B

2 4 6 8 10 12
Residual�ms

0

20

40

60

80

100

F
r
e
q
u
e
n
c
y

	ADPA1.tmp
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

