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Abstract

We present the first results of the K-band Multi-Object Spectrometer (KMOS) Lens-Amplified Spectroscopic
Survey, a new ESO Very Large Telescope large program, doing multi-object integral field spectroscopy of galaxies
gravitationally lensed behind seven galaxy clusters selected from the Hubble Space Telescope (HST) Grism Lens-
Amplified Survey from Space. Using the power of the cluster magnification, we are able to reveal the kinematic
structure of 25 galaxies at  z0.7 2.3, in four cluster fields, with stellar masses  ( )M M7.8 log 10.5.
This sample includes fivesources at >z 1 with lower stellar masses than in any previous kinematic integral field
unit (IFU) surveys. Our sample displays a diversity in kinematic structure over this mass and redshift range. The
majority of our kinematically resolved sample is rotationally supported, but with a lower ratio of rotational velocity
to velocity dispersion than in the local universe, indicating the fraction of dynamically hot disks changes with
cosmic time. We find that no galaxies with stellar mass < ´ M3 109 in our sample display regular ordered
rotation. Using the enhanced spatial resolution from lensing, we resolve a lower number of dispersion-dominated
systems compared to field surveys, competitive with findings from surveys using adaptive optics. We find that the
KMOS IFUs recover emission line flux from HST grism-selected objects more faithfully than slit spectrographs.
With artificial slits, we estimate thatslit spectrographs miss, on average, 60% of the total flux of emission lines,
which decreases rapidly if the emission line is spatially offset from the continuum.
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1. Introduction

With the advent of integral field spectroscopy, which obtains
spectra in spatial pixels, it is finally possible to achieve a three-
dimensional view of galaxies. Spatially resolved spectroscopy
allows us to observe large star-forming regions themselves and
make inferences about the physical conditions within galaxies.

The redshift range of  z1 3 was the most active time in
the universe’s history, covering the peak of the cosmic star-
formation history (SFH; Madau & Dickinson 2014) when more
than half of the stellar mass in the universe was built up (Ilbert
et al. 2013; Muzzin et al. 2013). Photometric surveys have
revealed that star-formation rates (SFRs) and SFR surface
densities in this period are systematically higher than those in
the local universe (e.g., Madau et al. 1996; Hopkins &
Beacom 2006; Shibuya et al. 2015; Willott et al. 2015). Many
galaxies at this epoch appear morphologically disordered (e.g.,
Shapley et al. 2001; Lee et al. 2013; Mortlock et al. 2013), a far
cry from the clear morphological bimodality in the galaxy
population in the local universe, between rotating disks and

dispersion-dominated elliptical galaxies. How this bimodality
arises and what processes change galaxies from disks to
ellipticals are still open questions (Bundy et al. 2005; Conselice
2014). Merger interactions are expected to play a role in
shaping galaxies (Nipoti et al. 2003; Bundy et al. 2005; Puech
et al. 2012), but observing such dynamical processes via the
“snapshots” available to astronomers is challenging.
Using integral field spectroscopy, we can ask questions

about how galaxies’ morphologies and kinematics are related
to their past and ongoing star formation. A key question is
whether the increase in SFRs is purely driven by an increase
in density and smooth gas accretion rates at higher redshifts
(e.g., Tacchella et al. 2013; Mason et al. 2015) producing
steady in situ star formation (Bundy et al. 2007; Conse-
lice 2014), or more stochastic processes for gas infall such as
major mergers (Somerville et al. 2001; Cole et al. 2002).
Additionally, changing physical conditions at high redshift
may alter the nature and efficiency of star formation:
e.g., decreased AGN activity, lower metallicities, or other
evolving feedback processes (Cullen et al. 2016; Hayward &
Hopkins 2017).
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The first generations of integral fields surveys using
single integral field unit (IFU) instruments, e.g., SINFONI/
SINS (Forster Schreiber et al. 2006; Genzel et al. 2011),
SINFONI/AMAZE-LSD (Gnerucci et al. 2011),and
IMAGES/FLAMES-GIRAFFE (Flores et al. 2006) have
primarily targeted star-forming galaxies with stellar masses
 M1010 . Most surveys found samples of ~ –z 1 3 galaxies,
which were roughly equally separated into threekinematic
classifications: rotation dominated systems, dispersion-domi-
nated systems, and merging/morphological unstable systems.
A key result was that the rotation dominated systems had
systematically higher velocity dispersions than local disks
(Bershady et al. 2010; Epinat et al. 2010), suggesting that at
high redshifts disks are highly turbulent. In addition, the
highest mass objects were rotating disks at high redshift, in
contrast to the local universe,where most objects with stellar
mass over M1010 aredispersion-dominated ellipticals. Similar
trends are seen with slit spectrographs (e.g., Price et al. 2016).

The K-band Multi-Object Spectrometer (KMOS, Sharples
et al. 2013) on the European Southern Observatories Very
Large Telescope (ESO/VLT) is the first multi-object near-IR
IFU instrument and capable of producing large samples of
kinematically resolved galaxies. Recent surveys using KMOS,
KMOS3D (Wisnioski et al. 2015), and KROSS (Stott
et al. 2016), find the majority of Hα-selected galaxies at
~ –z 1 2 are highly turbulent gas rich disks. However, these

and previous kinematic surveys have probed only the high-
mass end of the galaxy mass function ( M109 ) and thus there
is no clear picture of the kinematic evolution of low-mass
galaxies.

Seeing-limited IFU observations have been shown to
misclassify objects: at low spatial resolution, beam smearing
can both smooth out irregular rotation curves so that
kinematically irregular galaxies look like rotators (Leethocha-
walit et al. 2016b)or produce large velocity dispersions in
kinematic maps of compact galaxies, so that rotators look like
dispersion-dominated systems (Newman et al. 2013). Adaptive
optics (AO) on the single-object IFU instruments Keck/
OSIRIS and VLT/SINFONI have enabled high spatial
resolution spectroscopy of a handful of ~ –z 1 3 galaxies
(Newman et al. 2013), including objects thatare gravitationally
lensed, with stellar masses as low as ´ M6.3 108 (Jones
et al. 2010; Livermore et al. 2015; Leethochawalit
et al. 2016b). The surveys using AO find a lower fraction of
dispersion-dominated systems: high spatial resolution is needed
to clearly distinguish rotationally supported galaxies from
mergers and pressure supported systems.

While IFU surveys at z 1 have produced interesting
results, there are clear limitations: there is a need for large
samples of galaxies, spanning a broad range in stellar mass, and
with higher spatial resolution than provided by natural seeing.
Gravitational lensing provides a unique tool to study the
internal motions of galaxies with lower stellar masses than in
the field, and at higher spatial resolution than natural seeing. By
targeting cluster lens fields with a multi-object IFU instrument
such as KMOS, we can efficiently produce a large sample of
lensed high-redshift star-forming galaxies for the first time.

The KMOS Lens-Amplified Spectroscopic Survey (KLASS)
was designed to efficiently survey lensed low-mass high-
redshift galaxies in order to answer questions about how
galaxies’ star-formation histories are related to their kinematics.
KLASS is an ESO/VLT large program (PI: A. Fontana),

targeting gravitationally lensed galaxies behind seven massive
clusters from the Grism Lens Amplified Survey from Space
(GLASS, PI: T. Treu, Schmidt et al. 2014; Treu et al. 2015).
In this paper, we present a kinematic study of 32 lensed

galaxies at cosmic noon (  z1 3) with stellar masses of
 ( )M M7.8 log 10.5. We resolve kinematic structure

with a high signal-to-noise ratio (S/N > 5) in 25/32 galaxies.
By combining the magnifying power of gravitational lensing

(median magnification factor of ∼2 for the objects presented
here) and the multi-object capabilities of KMOS, KLASS
efficiently surveys galaxies at better spatial resolution than
natural seeing and with stellar mass up to an order of
magnitude smaller than previous studies. Five of the galaxies
with resolved kinematics at >z 1 in our sample have stellar
masses below ´ M6.3 108 , lower than any object previously
observed with an IFU.
Our sample reveals a large diversity in the star-forming

galaxy population at cosmic noon, with a range in inferred
kinematic structure and galaxy properties at every redshift.
This paper is structured as follows. In Section 2, we

introduce the GLASS and KLASS surveys. In Section 3, we
describe the KLASS sample selection, observations, and data
reduction. In Section 4, we present the analysis and key results
of our data, which are discussed in Section 5. We summarize
our findings in Section 6.
We use a Planck Collaboration et al. (2015) cosmology and

all magnitudes are in the AB system.

2. The KMOS Lens-Amplified Spectroscopic Survey

KLASS is an ongoing ESO VLT KMOS Large Program
targeting the fields of seven massive galaxy clusters, including
the four Hubble Frontier Fields (HFFs) visible from the
Southern Hemisphere. A comprehensive description of the
survey and data will be presented in C. Mason et al. (2017, in
preparation). Here, we provide a brief overview.
KLASS is a ground-based follow-up program for the

GLASS14 (Schmidt et al. 2014; Treu et al. 2015), a large
Hubble Space Telescope (HST) program which has obtained
grism spectroscopy of the fields of 10 massive galaxy clusters,
including the HFF (Lotz et al. 2016) and 8 of the CLASH
clusters (Postman et al. 2012). Near infrared spectra were
obtained with the Wide Field Camera 3 (WFC3) grisms G102
and G141, covering the wavelength range of m–0.8 1.6 m with
spectral resolution ~R 150. Full details of the GLASS survey
are described in Treu et al. (2015) and Schmidt et al. (2014).
High spectral resolution follow-up is needed confirm the

purity and completeness of the grism spectrato measure lines
that were unresolved in HSTand to obtain velocity information
that the low-resolution grisms cannot provide.
The key science drivers of KLASS are as follows.

1. To probe the internal kinematics of galaxies at ~ –z 1 3,
with superior spatial resolution to comparable surveys in
blank fields. The kinematic data will be combined with
metallicity gradients from the HST data to enable the
study of metallicity gradients as a diagnostic of gas
inflows and outflows (Jones et al. 2013, 2015; Wang
et al. 2016).

2. To confirm z 7 Lyα emission from the GLASS
sample, enabling us to constrain the timeline and

14 http://glass.astro.ucla.edu
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topology of reionization (Treu et al. 2012, 2013; Schmidt
et al. 2016).

The former science driver is the main focus of this paper; the
latter will be discussed in a future paper.

In this paper, we present the first results for 32 targets, with
~ –10% 50% of the planned exposure times, from four of the
clusters: MACJS0416.1-2403 (hereafter MACS0416);
MACSJ1149.6+2223 (MACS1149); MACSJ2129.4-0741
(MACS2129); and RXJ1347.5-1145 (RXJ1347). When com-
plete, KLASS will have approximately 60 targets at ~ –z 1 3
with all seven clusters. We are targeting ∼70 candidate
galaxies at >z 7,which will be described in future work after
the full integrations are complete. Final integration times of
targets are expected to be 10–15 hr.

3. Observations and Data

In this section, we describe the KMOS observations of the
sample presented in this paper.

3.1. Target Selection

Targets at “cosmic noon” (  z1 3) were selected from
the HST GLASS spectroscopic sample, with at least one bright
nebular emission line (Hα, [O III] or [O II]) in the KMOS YJ
range, away from bright OH sky lines. HST grism spectra for
all of the targets presented in this paper are available in the
public GLASS data release.15 The selection by line flux means
our sample is comprised of star-forming galaxies, which would
not necessarily be the case for mass-selected samples.

3.2. Observations and Data Reduction

Observations presented in this paper were carried out in
service mode in Periods 95–97, from 2015 July to 2016 April.
The KMOS YJ band is used for the entire program, covering

m–1 1.35 m, with spectral resolution ~R 3400, as required to
resolve kinematics in our sample. Observations are executed in
1 hr observing blocks (each comprising a total 1800 s on
science objects and 900 s on sky). Pixel dither shifts were
included between science frames. A star is observed in 1 IFU in
every observing block to monitor the point-spread function
(PSF) and the accuracy of dither offsets. All exposures had
seeing  0. 8 with median seeing ~ 0. 6. This corresponds to a
spatial resolution of m~5 kpc at ~z 1, where μ is the
gravitational lensing magnification of an object.

The total integration times of individual objects are listed in
Table 1. The integration times are comparable to those of
KROSS (2.5 hr per source, Stott et al. 2016) and generally
lower than KMOS3D (2–20 hr per source, Wisnioski
et al. 2015). Though we note that the targets should all have
10 hr integrations when KLASS is complete.

All data were reduced using the ESO KMOS pipeline
(Davies 2013),including an optimized sky subtraction routine
from Davies (2007). We also apply a correction for read-out
channel level offsets, a known problem with the KMOS
detectors. Individual data cube frames are combined by sigma
clipping and using spatial shifts determined by the position of
the star observed in the same IFU in each frame. A full
description of the reduction procedure will be given by
C. Mason et al. (2017, in preparation).

4. Analysis and Results

In this section we present the key analyses and findings of
our investigation. We find KMOS measures emission flux
consistent with the HST grisms. After deriving galaxy proper-
ties from spectral energy distribution (SED) fitting and
kinematic modeling, and correcting for lensing effects, we
classify our sample in 5 kinematic categories. We find the
majority are rotation supported and investigate correlations
between kinematic properties and star-formation parameters.

4.1. Comparison of HST Grism and Ground-based Flux
Measurements

HST grism surveys such as GLASS and the Faint Infrared
Grism Survey (PI: Malhotra, Tilvi et al. 2016) are providing
high spatial resolution near-IR spectroscopy, free from atmo-
spheric attenuation. However, emission lines discovered in the
HST grisms and followed up from the ground have shown
some tension in line flux measurements: both for intermediate
redshift nebular emission lines (Masters et al. 2014) and Lyα
emission at z 7, with Keck/MOSFIRE measuring up to~ ´5
lower flux than the HST G102 grism for Lyα(Tilvi et al. 2016,
Hoag et al. 2017).
Ensuring consistent flux measurements from space and

ground-based spectroscopy is important to calibrate instru-
ments, and for making physical inferences from data. Accurate
flux measurements of Lyα emission are vital for making
inferences about the epoch of reionization (Treu et al. 2012,
2013), which is a key science driver of KLASS and GLASS.
Thus we want to investigate how fluxes measured with KMOS
compare with those from the HST grisms.
In Figure 1 we compare flux measured by the HST grisms

G102 and G141 and flux measured by KMOS YJ, for emission
lines of objects  z1 3. We find good agreement between
line fluxes measured in KMOS and those from the HST grisms
in GLASS, in contrast to results from slit spectrographs
(Masters et al. 2014; Huang et al. 2016; Schmidt et al. 2016;
Tilvi et al. 2016, Hoag et al. 2017), suggesting that slit losses
can be a serious systematic problem, especially for faint
objects, which seems to be avoided by the wide field of IFUs
such as KMOS. Keck/DEIMOS and MOSFIRE are tradition-
ally the instrument of choice for following-up faint high-
redshift targets, but our results show that IFU instruments such
as KMOS are necessary to collect the true emission line flux
from an object, especially if the emission is likely to be more
extended than, and/or offset, from the UV continuum observed
with HST—as is often the case for highly resonant lines such as
Lyα (Tilvi et al. 2016; Wisotzki et al. 2016), and the offset can
be enhanced by lensing (Smit et al. 2017).
To quantify the effect of slit losses and emission lines offset

from the continuum we placed artificial slits on the KMOS data
cubes. We used a slit width of  =0. 8 4 pixels, comparable to
the slit width of the MOSFIRE/MOSDEF kinematic survey
( 0. 7, Price et al. 2016). We placed slits at the peak of the
emission line and then at increasing radial offsets from the
peak. We measure the flux in the slits aligned at random
orientations and take the mean value from all slit orientations at
each offset distance.
In Figure 2 we plot the ratio between flux measured in the

slit and the total emission line flux in the KMOS cube as a
function of spatial offset. When the spatial offset is 0 we
recover the slit loss due to slit size. For our sample,15 https://archive.stsci.edu/prepds/glass/
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~ –15% 90% of the total flux is measured when using a slit
placed on the center of the emission line, with mean value
61±1%. There is a large scatter in recovered line ratios, due
to spatial extent and varying morphologies, this produces ratios
comparable to those seen by Masters et al. (2014). However, if
the slit is offset from the spatial center of the emission line, the
recovered flux decreases significantly: for a spatial offset of 1. 1
the mean recovered flux ratio is only~20%. This flux loss due
to spatial offset may explain the tension found for the Lyα
measurements.

4.2. Photometric Properties and Gravitational Lens Modeling

The stellar masses are obtained from the SEDs of the
galaxies in the HFF photometric catalogs (MACS0416 and
MACS1149, Morishita et al. 2016), and the CLASH photo-
metric catalog (MACS2129 and RXJ1347, Postman

et al. 2012). The SEDs are fit using the Fitting and Assessment
of Synthetic Templates code (Kriek et al. 2009) using the
Bruzual & Charlot (2003) stellar populations with an
exponential declining SFH and a Chabrier (2003) initial mass
function (IMF). Reddening for the stellar continua, AV,SED are
obtained for a Calzetti et al. (2000) dust extinction law.
In Figure 3, we show the demagnified stellar mass

distribution of objects in our sample, compared with the
KMOS3D and KROSS samples. While we have a smaller
sample than those surveys, we cover a broader mass range and
have a larger proportion of low stellar mass objects. ~63% of
our sample is comprised of objects with stellar mass below the
KMOS3D mass limit of ~ ´ M6 109 . KROSS does contain
objects with comparable stellar masses to KLASS, but in lower
proportions:~5% of the KROSS sample contains galaxies with
stellar mass below M109 , compared to ~19% in KLASS.
KLASS is the first IFU survey to resolve kinematics in objects

Table 1
Observed and Derived Galaxy Properties

Cluster IDa R.A. Decl. zKMOS Kinematic Integration Magnification Mlog10 s0 Vmax Kinematic
Line Time (hr) mb

( )M c (km s−1) (km s−1) Classd

MACS0416 94 64.0331 −24.0563 1.37 [O III] 4.75 -
+1.89 0.01

0.02 9.88±0.13 <38 31±9 3

MACS0416 372 64.0352 −24.0710 1.99 [O II] 4.75 -
+2.37 0.02

0.01 10.20±0.10 43±28 L 5

MACS0416 394 64.0366 −24.0673 0.94 Hα 4.75 -
+18.47 3.03

0.96 9.22±0.12 12±15 133±22 2e

MACS0416 430 64.0536 −24.0660 2.10 [O II] 4.75 -
+2.92 0.05

0.05
-
+9.17 0.18

0.12 <30 L 5

MACS0416 706 64.0514 −24.0713 1.35 [O III] 4.75 -
+2.11 0.03

0.03 8.31±0.11 <36 24±7 3

MACS0416 863 64.0169 −24.0742 1.63 [O III] 4.75 -
+2.98 0.11

0.12
-
+8.84 0.81

0.27 38±6 191±43 2e

MACS0416 880 64.0310 −24.0790 1.64 [O III] 4.75 -
+2.22 0.13

0.14 9.73±0.11 <34 62±5 4

MACS0416 955 64.0419 −24.0758 1.99 [O II] 4.75 -
+3.21 0.04

0.07 9.77±0.10 31±23 L 5

MACS1149 593 177.4069 22.4075 1.48 [O III] 2.25 -
+2.34 0.01

0.02 9.27±0.10 8±3 142±9 1

MACS1149 683 177.3972 22.4062 1.68 [O III] 2.25 -
+9.90 0.40

0.33 7.75±0.10 <25 30±6 4

MACS1149 691 177.3824 22.4058 0.98 Hα 2.25 -
+2.00 0.07

0.11
-
+9.30 0.17

0.12 24±11 27±14 4

MACS1149 862 177.4034 22.4024 1.49 [O III] 2.25 -
+3.90 0.04

0.04 9.66±0.10 <34 L 5

MACS1149 1237 177.3846 22.3967 0.70 Hα 2.25 -
+1.36 0.00

0.01 8.64±0.12 15±36 27±13 4

MACS1149 1501 177.3970 22.3960 1.49 [O III] 2.25 -
+12.42 1.43

1.28 9.44±0.11 15±7 227±32 2

MACS1149 1625 177.3900 22.3895 0.96 Hα 2.25 -
+1.80 0.02

0.02 10.54±0.12 123±5 139±11 4f

MACS1149 1644 177.3944 22.3892 0.96 Hα 2.25 -
+1.79 0.02

0.03
-
+10.35 0.18

0.12 200±12 108±24 3

MACS1149 1757 177.4085 22.3868 1.25 [O III] 2.25 -
+3.83 0.11

0.13
-
+8.39 0.18

0.12 5±29 16±28 2e

MACS1149 1931 177.4034 22.3816 1.41 [O III] 2.25 -
+2.05 0.03

0.03 10.22±0.10 44±4 137±13 2

MACS2129 37 322.3627 −7.7099 2.29 [O II] 1 -
+1.58 0.06

0.07
-
+10.13 0.15

0.11 94±7 L 5

MACS2129 49 322.3528 −7.7101 1.88 [O II] 1 -
+1.38 0.02

0.01
-
+9.80 0.20

0.14 109±45 L 5

MACS2129 329 322.3634 −7.7032 1.65 [O III] 1 -
+1.67 0.05

0.06
-
+9.74 0.17

0.12 11±6 132±23 2

MACS2129 1437 322.3508 −7.6819 1.36 [O III] 1 -
+1.66 0.02

0.02 9.52±0.10 38±18 100±50 2

MACS2129 1566 322.3724 −7.6792 1.48 [O III] 1 -
+1.56 0.05

0.07 9.56±0.12 101±18 L 5

MACS2129 1739 322.3605 −7.6745 1.49 [O III] 1 -
+1.41 0.02

0.02 9.32±0.10 60±6 52±9 4f

RXJ1347 188 206.8861 −11.7338 0.93 Hα 3 -
+2.42 0.04

0.04 10.10±0.10 6±1 87±12 2

RXJ1347 287 206.8910 −11.7474 1.01 [O III] 3 -
+2.34 0.07

0.08 9.58±0.11 39±1 46±6 2

RXJ1347 450 206.8757 −11.7645 0.85 Hα 3 -
+1.92 0.03

0.03 10.12±0.10 37±54 145±50 2e

RXJ1347 472 206.8719 −11.7610 0.91 Hα 3 -
+2.78 0.07

0.10
-
+9.44 0.23

0.15 42±3 108±8 1

RXJ1347 795 206.8882 −11.7613 0.62 Hα 3 -
+1.51 0.03

0.02 10.33±0.10 45±2 198±8 2

RXJ1347 1230 206.8960 −11.7537 1.77 [O III] 3 -
+40.56 12.83

32.59
-
+8.76 0.40

0.21 62±19 172±49 2e

RXJ1347 1261 206.9002 −11.7476 0.61 Hα 3 -
+1.76 0.03

0.02 10.47±0.10 12±6 217±17 1

RXJ1347 1419 206.9022 −11.7443 1.14 [O III] 3 -
+8.98 0.60

0.80 9.30±0.11 45±2 25±8 2

Notes.
a IDs match the GLASS IDs in the public data release, v001 available at https://archive.stsci.edu/prepds/glass/.
b Magnification estimate from cluster mass maps as described in Section 4.2.
c Stellar masses obtained from SED fitting (Section 4.2) have been corrected for magnification.
d Kinematic class described in Section 4.3.
e Modeled with the 2D velocity map model rather than GalPaK3D.
f Probable mergers.
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with stellar mass below ~ ´ M6.3 108 at >z 1:5 objects in
our sample fall below this mass limit.

The lensing effects on each source due to the gravitational
potential of the foreground cluster were obtained using the

SWUnited cluster mass models (Bradač et al. 2005, 2009). For
the clusters that are part of the HFF, we use the publicly
available lens models16 (Hoag et al. 2016), for MACS2129, we
use the model described in Huang et al. (2016), and the
modeling for RXJ1347 will be presented in E. Q. Finney et al.
(2017, in preparation). Lensing parameters were obtained at the
position of each targets from the 2D maps of κ, the
dimensionless mass surface density of the lensing system, or
convergence, and g g g= + i1 2 the shear,which measures the
distortion of images (e.g., Kochanek 2004; Keeton et al. 2005).
Stellar masses and SFRs obtained from SED fitting and
emission line flux measurements will be affected by gravita-
tionally lensing, as fluxes are magnified. In the following
sections, we will refer to the magnification-corrected stellar
masses and SFRs. Additionally, gravitational lensing distorts
the images and kinematic maps, and removes symmetries in the
velocity maps (De Burgh-Day et al. 2015).
In this first exploration of the sample, we chose not to do a

full lensing reconstruction of the objects back to the source
plane. The majority of the sources in this paper are not
significantly lensed, with magnifications ofm ~ –1.4 2.5, and
have small shears g∣ ∣ 0.1, so the effect of lensing is small on
the kinematic maps.
However, gravitational lensing will distort the axis ratios of

objects derive from photometry, which are needed for deriving
effective radii and inclination angles, so when using these
values we scale by the extra distortion induced by lensing.
Following Keeton (2001), we derive the source plane axis ratio

Figure 1. Line flux of nebular emission lines from multiple objects in the
KLASS first results sample (black points), measured both from the HST grism
in GLASS and from KMOS as described in this paper. We compare the KMOS
data with recent results using slit spectrographs, which also have HST grism
spectra (Masters et al. 2014; Tilvi et al. 2016; Huang et al. 2016, Hoag et al.
2017). Nebular emission line measurements are shown as filled shapes, and
Lyα line measurements are shown as empty shapes.

Figure 2. Fraction of emission flux measured by artificial slits with width 0 . 8
compared to the total flux in a KMOS data cube as a function of slit spatial
offset from the emission line center. Gray points are the mean measurement
from artificial slits for all emission lines presented in this paper, with size
representing the spatial extent of the emission line determined from an S/N
map. The green points show the mean of the flux ratio for all lines at each
spatial offset value. As well as regular slit losses, if the slit is not centered on an
emission line, a significant proportion of the total flux will be missed.

Figure 3. Histograms showing the normalized stellar mass distributions of our
sample compared to those of KROSS (Stott et al. 2016, ~z 1) and KMOS3D

(Wisnioski et al. 2015, ~z 1 and ~z 2). A high proportion of the KLASS
sample (~19%) contains galaxies with stellar masses below M109 , compared
to ~5% in KROSS, and no objects in KMOS3D. While KROSS contains
objects at ~z 1 with comparable stellar masses to KLASS, KLASS is the first
survey to resolve kinematics in galaxies with stellar mass below~ ´ M6 108

at >z 1.

16 https://archive.stsci.edu/prepds/frontier/lensmodels/
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from the observed image plane axis ratio, ( )b a im as
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is the inverse of the axis ratio produced by lensing.
The source plane axis ratio is equal to icos ,where i is the

intrinsic inclination angle of a thin disk. We note that the axis
ratio depends on the position angle of the source from the
center of the lensing potential. We assume an average source
position angle of 90◦ to derive this equation. The source plane
effective radius is approximated as k g= - -( ∣ ∣)r r1e s e, ,im.
For the majority of sources presented here, the shear effects
produce<40% changes in effective radii and axis ratios. In the
cases where objects have m 4, lensing effects on kinematics
may be stronger, so we clearly mark these outliers in
thefigures thatfollow.

KLASS is complemented by additional VLT follow-up of
gravitationally lensed multiple images in the Frontier Fields
clusters MACS0416 (with VIMOS and Multi Unit Spectro-
scopic Explorer (MUSE), Grillo et al. 2015; Caminha
et al. 2016) and MACS1149 (with MUSE, Grillo et al.
2016). There is excellent agreement in spectroscopic redshifts
for overlapping objects in KLASS and these studies.
MACS0416_372 and MACS0416_955 are multiple images of
the same galaxy (Grillo et al. 2015; Caminha et al. 2016). The
derived intrinsic velocity dispersions (see Section 4.3) for these
images from our data are consistent with being the same source
(see Table 1), however, their stellar masses differ by 0.43 dex.
We note that stellar population parameters, which are
independent of magnification (age and specific SFR) derived
from the SEDs of these objects, are consistent, so this
discrepancy is likely due to systematics in the magnification
map we used. Thus this is a good example of the complexities
of cluster mass modeling and the need for many spectro-
scopically confirmed multiple images. MACS0416_394 is also
a multiple image, which may be overlapping with an image of
the same system (Caminha et al. 2016), we thus neglect it when
fitting any trends to our data. MACS1149_1501 and
MACS1149_862 are multiple images of the SN Refsdal host
galaxy (Kelly et al. 2015; Grillo et al. 2016; Treu et al. 2016).

4.3. Kinematics

We derive kinematic properties of the galaxies by fitting the
strongest available emission line: Hα at <z 1, the [O III]
doublet at  <z1 1.8, and the [O II] doublet at z 1.8.

To measure integrated properties, we sum the flux in spaxels
within a spatial aperture derived from the whitelight image of
the full cube, which is then expanded to optimize the signal-to-
noise ratio in the line. This results in a custom-extracted 1D
spectrum for each galaxy. We then fit the emission lines as a
Gaussian (two Gaussians for the doublets), plus a linear
continuum component. The fits are weighted by the inverse
variance spectrum derived from the sky emission lines and the
bad pixel mask. To measure the total velocity dispersion in the
ionized gas, we subtract the instrumental broadening (FWHM
~ 4 Å) in quadrature and to correct for beam smearing due to
the PSF, we subtract the radial velocity gradient linearly (Stott

et al. 2016):

s s s= -
D

D
-

⎛
⎝⎜

⎞
⎠⎟ ( )V

R
, 30

2
obs

PSF

2

instr
2

where sobs is the observed velocity dispersion measured from
the 1D emission line fitting,D DV RPSF is the velocity gradient
measured within the PSF radius, and sinstr is the instrumental
broadening measured from sky lines in the data. If no clear
velocity gradient is measured we subtract 23.3 km s−1, the
median beam smearing value for the sample. We note that
beam smearing is highly dependent on the flux profile of the
individual galaxy compared to the size of the PSF, so this
median value may not be suitable in all cases, but it provides a
reduction of an appropriate order.
Kinematic maps are produced by fitting Gaussian profiles to

the flux in individual spaxels over a 50 Årange around the
line-center derived from the integrated emission line profile.
We require an S/N > 5 for a successful fit. Following
Livermore et al. (2015) andStott et al. (2016),we initially
aim to fit the emission line in 1 spaxel (  ´ 0. 2 0. 2), but expand
the fitting region to encompass neighboring spaxels in
 ´ 0. 4 0. 4 and  ´ 0. 6 0. 6 apertures if the S/N criterion is
not satisfied. We then reject any spaxels where the errors on the
derived flux, central wavelength or line dispersion are>50% of
the measured values. The velocity and velocity dispersion maps
are produced as the first and second moments of the line
profiles. The high S/N 2D flux and kinematic maps for our
sample are presented in Appendix A. We are able to produce
kinematic maps for 25/32 galaxies.
To derive kinematic properties,we use the kinematic fitting

code GalPaK3D(Bouché et al. 2015), which was designed for
IFU instruments and fits disk models to 3D data cubes
themselves (see also Di Teodoro & Fraternali 2015; Di
Teodoro et al. 2016, for an alternative 3D fitting tool).
GalPaK3D has been shown to work well with VLT/MUSE data
(Bacon et al. 2015; Contini et al. 2016). This is the first time it
has been used on KMOS data. We refer the reader to Bouché
et al. (2015) for a full description of the fitting procedure, and
we outline only the key points here.
Using GalPaK3D we produce a three-dimensional galaxy

model with an exponential radial flux profile and Gaussian disk
luminosity thickness with scale height hz. The velocity profile
is modeled as an arctangent function(Courteau 1997):

p
=

⎛
⎝⎜

⎞
⎠⎟( ) ( )V r V i

r

r
sin

2
arctan , 4

t
max

where r is the distance along the major axis of the galaxy in the
plane of the sky, Vmax is the asymptotic velocity in the plane of
the disk, i is the inclination of the disk, and rt is the turnover
radius.
The total line-of-sight velocity dispersion, stot has three

components: (1) the local isotropic velocity dispersion, sd, due
to the self-gravity of the disk, which is given by
s =( ) ( )r h V r rd z for a compact thick disk; (2) a mixing term
due to the mixing of velocities along the line of sight in a disk
with non-zero thickness; and (3) the intrinsic velocity
dispersion, s0, which we assume to be isotropic and spatially
constant, which measures the dynamical “hotness” of the disk.
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The terms are added in quadrature:

s s s s= + +( ) ( ) ( )r r . 5d mtot
2 2 2

0
2

By construction, stot is radially symmetric. It is therefore
likely that the galaxies best fit by GalPaK3D have the most
regular symmetric velocity dispersion maps. However, the
observed total velocity dispersion maps of many galaxies in our
sample, plotted in Figures 8–11, are not symmetric. This
asymmetry may be due to clumpy star formation and/or slow
mixing of turbulence in the disk (Genzel et al. 2011;
Glazebrook 2013).

The model is convolved with a 3D kernel comprised of the
instrumental line spread function (LSF) of KMOS measured
from sky lines and the median PSF of the data derived from
observing faint stars (see Section 3.1). This 3D convolved
model is then compared with the data itself. We use the
Bayesian MCMC fitting method described in Bouché et al.
(2015) to fit the 3D model to the data cubes in the vicinity of
the emission line. We fix the x y, centroid of the emission line
to the center of the YJ continuum and fit for ninefree
parameters: lc the central wavelength of the emission line; ftot
the total flux in the emission line; r1 2, the half-light radius of
the disk; the inclination i of the disk and the position angle
(PA) in the plane of the sky; the velocity profile turnover radius
rt; the asymptotic velocity V ;max a systemic velocity offset V ;sys
and the intrinsic velocity dispersion s0. As inclination, rt and
Vmax are degenerate in an arctangent model, if a source is not
highly distorted by lensing magnification (m < 4), we
additionally constrain the inclination using a uniform prior
over  i 20HST , where iHST is obtained from the axis ratio of
sources in the HST photometry (Section 4.2) using GALFIT
(Peng et al. 2010) and assuming a thin disk.

Using a Bayesian method enables us to treat the uncertainties
on all parameters simulatenously and robustly. We require the
acceptance rate of useful iterations of the MCMC walk to be
between 30% and 50%, the reduced–c2 of the model velocity
map to be<15, and the RMS difference between the observed
and model velocity maps to be < V i0.4 sinmax for afit to be
accepted. Eleven objects are fit by GalPaK3D.

Some objects display clear velocity gradients in the 2D
kinematic maps (Figures 8–11) but GalPaK3D

fits them poorly.
For these objects, we fit the 2D velocity map using
Equation (4), rather than the full 3D fitting. We fit the 2D
maps using a Bayesian model to fit forthe inclination i of the
disk and the position angle (PA) in the plane of the sky; the
velocity profile turnover radius rt; the asymptotic velocity V ;max
and a systemic velocity Vsys. We use the EMCEE MCMC
sampler (Foreman-Mackey et al. 2013) and the same prior on
inclination as described above. This 2D method produced
kinematic parameters consistent with those from GalPaK3D for
the same objects. We accept fiveobjects for which GalPaK3D

failed as well-fit by the 2D model, with the reduced–c2 of the
fit <15, and the RMS difference between the observed and
model velocity maps to be < V i0.4 sinmax .

Of these fiveobjects, which were fit only by the 2D model,
two are significantly magnified, with m > 15 (MACS0416_394
and RXJ1347_1230). As GalPaK3D attempts to fit a model to the
light profile of the galaxy, it is expected that GalPaK3D will fail
for highly magnified objects that are distorted. As lensing does
notchange the observed velocities (Jones et al. 2010; De Burgh-
Day et al. 2015) it is still possible to fit a simple kinematic model
to these objects, but due to the large uncertainties in measuring
inclination deriving source plane parameters is challenging (see

Section 4.2 for more discussion), so these objects are neglected in
our further analyses. The other threeobjects (MACS0416_863,
MACS1149_1757,and RXJ1347_450) are compact, with

< ~ r r 0. 31 2 PSF , so were unlikely to be well-fit by GalPaK3D,
which requires r r1.51 2 PSF.
To transform to the source plane, we correct the inclination

and radii fit by GalPaK3D or the 2D method using Equation (1),
and then calculate a source plane Vmax using the corrected
inclination.
For the remaining objects, which were not well-fit by either

GalPaK3D or the 2D velocity map model, we construct
= ( – )V v v 2max,obs max min from the 2D velocity maps as an

approximate measure of the rotational velocity of these objects,
which are unlikely to be regularly rotating. This measure of
Vmax is likely to underestimate an asymptotic velocity
becausewe do not measure velocity with high S/N in the
outer regions of many galaxies. Thus we rescale velocities
measured in this way, assuming arctangent rotation curves
(Equation (4)):

p
=

( ¯ )
( )V

V

i R rsin 2

1

arctan
, 6

t
max

max,obs

where i is the source plane inclination determined from
photometry (Section 4.2) and corrected for lensing via
Equation (1), R is a measure of the observed radial extent of
the galaxy in KMOS ( p= ( )R Npx , where Npx is the number
of spaxels in the 2D velocity map) and =r̄ 1.24t is the median
turnover radius of the sample fit by GalPaK3D and the 2D
method described above. This results in a median rescaling
factor for the velocities of these objects of 1.25.
These three measures of maximum velocity (from Gal-

PaK3D, the 2D fit, and the rescaled velocity map) produce
consistent velocities for the 11 galaxies that were well-fit by
GalPaK3D, it is reasonable to use “last-resort” methods to
estimate the velocity of rotating disks. We use velocities
derived from GalPaK3D and the 2D fit to investigate trends for
objects that are likely rotating disks. The objects that were not
fit by either GalPaK3D or the 2D method anddo not have clear
velocity gradients are unlikely to be rotating disks. Here, Vmax
gives us an approximate measure of gas kinematics in the
galaxies.
Following the fitting, we classify the galaxies into five

kinematic categories.

1. Regular rotators: rotation dominated systems with
s >V 1max 0 and well-fit byGalPaK3D with the

reduced-c2 of the model velocity map <3 and the RMS
difference between the observed and model velocity maps
< V i0.15 sinmax . These comprise 3/25 of the resolved
systems.

2. Irregular rotators: systems with clear velocity gradients fit
either by GalPaK3D or the 2D method with reduced-c2 of
the fit <15 and the RMS difference between the observed
and model velocity maps< V i0.4 sinmax , and s >V 1max 0 .
These comprise 13/25 resolved systems.

3. Dispersion-dominated: systems with s <V 1max 0 . These
comprise 3/25 resolved systems.

4. Mergers/unknown: systems with merging signatures
evident in HST images and/or kinematic maps, and
systems with irregular kinematic maps where no clear
velocity gradients are evident. These comprise 6/25
resolved systems, of which 2appear to be mergers.
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5. Unresolved: there are 7/32 total systems with unresolved
kinematic maps. The majority of these systems are
compact or in MACS2129, which had the shortest
integration time. We measure the velocity dispersion of
the these objects from their 1D spectra obtained in S/N
optimized spatial apertures.

Table 1 shows the sources presented in this paper and their
derived kinematics properties. Observed kinematic maps for
the sample are shown in Appendix A in Figures 8–11. We plot
the HSTRGB images obtained from CLASH or HFF
photometry, the whitelight image from KMOS YJ, the 2D
emission line used for kinematic modeling, the velocity maps
and velocity dispersion maps.

Rotation curves are produced by plotting 1D cuts in the
velocity maps, along the major kinematic axis of the galaxy as
determined by the Bayesian fitting, either from GalPaK3D or
the 2D fitting. Rotation curves for the regular and irregular
rotators (kinematic classes 1 and 2) are presented in
Appendix B.

The introduction of two classes of rotators was motivated by
the three objects for which GalPaK3D produced excellent fits,
with the cut (reduced c- 2 of the model velocity map <3 and
the RMS difference between the observed and model velocity
maps < V i0.15 sinmax for class 1) arising from a natural
clustering in the fit statistics for the rotating objects. The class
1 objects have symmetric rotation curves (Figure 12) aligned
with their photometric axes and velocity dispersion maps,
which appear to peak at the center of their light profiles
(Figure 8, with the exception of MASC1149_593). The second
“irregularly rotating” group of galaxies display more asymme-
tries in their velocity and velocity dispersion maps (e.g.,
RXJ1347_287 and RXJ1347_188), and several have clumps in
the HST photometry, which may indicate intense star-forming
regions or minor mergers (e.g., MACS1149_1757,
RXJ1347_1419, and RXJ1347_795).

4.4. Star-formation Drivers

To investigate the relationships between the high SFR
observed at z 1 (e.g., Madau & Dickinson 2014; Whitaker
et al. 2014), we look for correlations between SFRs and the
kinematic properties of our sample, and any evolution with
redshift.

To derive SFRs, we use the KMOS measured magnification-
corrected line flux of Hα ( <z 1), Hβ (  <z1 1.8), or [O II]
( z 1.8). We convert line flux to SFR using relations from
Kennicutt (1998) and divide SFRs by a factor of 1.7 to convert
from a Salpeter (1955) to Chabrier (2003) IMF. We assume a
Case B recombination extinction-corrected Balmer decrement
of 2.86 for all Hβ measurements.

To correct for extinction, we use the stellar reddening factors
calculated from the SED fitting and additional empirical
calibrations to convert continuum extinction to nebular
emission line extinction. Objects MACS1149_593 and
MACS1149_683 have nebular extinction values derived from
GLASS data by Wang et al. (2016). For the remaining sources,
we use the calibration from Wuyts et al. (2013), where

= -( )A A A1.9 0.15V,gas V,SED V,SED . We use the Cardelli et al.
(1989) reddening curve with RV = 3.1.

In Figure 4, we plot the galaxy stellar masses derived from
photometry (Section 4.2) versus their SFRs derived from the
KMOS line fluxes. We see that our galaxies are scattered

around the star-forming main sequence in their mean redshift
bins. Our sample is too small to draw firm conclusions, but
reflects a large diversity in the lives and dynamics of star-
forming galaxies at cosmic noon.
In Figure 5, we plot correlations between sVmax 0, s0, stellar

mass, and specific SFR. We see that the majority of our
systems have s >V 1max 0 indicating most of these systems are
rotationally supported. 16/25 resolved systems are rotationally
supported (kinematic classes 1 and 2), with five additional
objects with s >V 1max 0 , consistent with the 83% of systems
in KROSS (Stott et al. 2016) at ~z 1, and 93% of systems at
~z 1,and 73% of systems at ~z 2 in KMOS3D (Wisnioski

et al. 2015).
Of the five objects that have s <V 1max 0 , we consider only

threeto be dispersion-dominated. RXJ1347_1419 has a clear
rotation curve, so itis classed as an irregular rotator (Figure 13),
but itis magnified by m ~ 9 so there are large uncertainties in
deriving the source plane maximum velocity. MACS2129_1739
has multiple components (Figure 11) and a velocity gradient,
suggesting that this is a merger system.

4.5. Kinematic Trends

KLASS shows a large diversity in the kinematics of star-
forming galaxies with mass and redshift. Regular rotating disks
exist with stellar masses > ´ M3 109 , with other irregular
rotationally supported systems existing at a wider range of
mass (upper left panel, Figure 5). The merging and irregular
systems have sSFRs> -0.1 Gyr 1 (right panels, Figure 5),
suggesting that their disturbed gas dynamics may be enhancing
the SFRs in some of these objects compared to kinematically

Figure 4. Velocity maps for galaxies in our sample with resolved kinematics,
plotted at the galaxy’s position on the SFR -M plane. We plot the empirical
SFR models from Whitaker et al. (2014) at a range of redshifts (indicated by
linestyle) to compare with KLASS. The shapes around the velocity maps
indicate the redshift bin of the object: <z 1 (square),  <z1 1.8 (circle), or
z 1.8 (diamond), and the colors indicate the kinematic class as described in

Section 4.3. Our sample shows a large scatter around the star-forming main
sequence.
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ordered systems. Our sample shows higher sSFRs at higher
redshift (lower right panel, Figure 5), irrespective of kinematic
class, consistent with the expectation of a higher mass accretion
rate and densities at high redshifts (Tacchella et al. 2013;
Mason et al. 2015).

With the power of lensing, we can access the low-mass
galaxies that are missing from other surveys. Our sample
includes fivegalaxies with stellar massesbelow ´ M6.3 108 ,
lower than any previous IFU targets at >z 1. In Figure 5, we
can see that all the galaxies below ´ M3 109 have complex
kinematics: no regular rotators exist below this limit. These
systems at >z 1 all have sSFR> -1Gyr 1. We discuss the low-
mass galaxies in Section 5.2.

The dispersion-dominated systems exist at both low and high
masses, and a decade apart in sSFR. These are clearly very
different systems (see kinematic maps in Figure 9) and are
discussed further in Section 5.3.
The mean sVmax 0 for the regular rotator sample is

12.7±2.4—similar to the values in the local universe (5–20,
e.g., Epinat et al. 2010), while for the irregularly rotator sample
the mean value is lower at 5.5±0.5, suggesting that these
objects are dynamically hotter. This justifies the splitting of the
rotation dominated sample into twosub-samples.
In Figure 6, we plot sVmax 0 for the rotation dominated

galaxies in our sample, and s0 for all galaxies, as as function of
redshift, to explore evolution in these parameters. We exclude

Figure 5. Velocity dispersion and sVmax 0 as a function of stellar mass and sSFR for our sample. The marker styles indicate the redshift bins of the survey, the colors
indicate the kinematic classification and the marker size indicates stellar mass. Open markers indicate thatthe magnification of the object is large (m > 4) so intrinsic
velocity measurements are more uncertain. We note that the majority of systems at >z 2, which are unresolved, are in the the cluster MACS2129, which had the
shortest integration time. We plot points from KROSS (Stott et al. 2016) and KMOS3D (Wisnioski et al. 2015) for comparison. We measure s0 in a similar way to
KROSS (Section 4.3), whereas KMOS3D measuring s0 from the outer regions of 2D velocity dispersion maps. Stott et al. (2016) notes KROSS s0 obtained in this way
are a factor of ∼2 higher than those from KMOS3D.
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five highly magnified galaxies (m > 4) and any galaxies for
which we only have limits on these parameters. We also
compare our data with results from other IFU surveys over the
redshift range  z0 3.5. Comparing the data in redshift bins
across all surveys, our data qualitatively support a trend of
decreasing sVmax 0 with redshift (Glazebrook 2013; Wisnioski
et al. 2015), suggesting that disk galaxies are dynamically
“hotter” at high redshift.
To quantify any evolution in our sample we fit a simple model

of the form ~ +a b
( ) ( )f M M z10 110 using a Bayesian

fitting procedure using the EMCEE sampler (Foreman-Mackey
et al. 2013). We include dependence on mass because our sample
spans a wide range in stellar mass which is correlated with
velocity and, to some extent, velocity dispersion (e.g., Tully &
Fisher 1977; Kassin et al. 2007). For sVmax 0, a = 0.29 0.05
and b = - 0.08 0.37, suggesting a very marginal decline with
increasing redshift, but no redshift evolution is also consistent
with the data. There is a stronger dependence on stellar mass,
which is expected because the highest stellar mass objects are
predominantly regular rotating disks, as discussed above. For s0,
a = 0.42 0.02 and b = 1.09 0.12, indicating an increase
in s0 with both increasing stellar mass and redshift for our sample.
An increase in s0 with redshift is also seen in other work
(Wisnioski et al. 2015) and could be due to high densities and
high rates of gas inflow at high redshift driving up velocity
dispersion in a disk.

Figure 6. sVmax 0 as a function of redshift for the galaxies classified as regular
rotators and irregular rotators in our sample (Section 4.3), and intrinsic velocity
dispersion as a function of redshift for all galaxies in our sample. We exclude
highly magnified galaxies (m > 4) and galaxies for which we have only limits
on these parameters. We plot the individual data as gray squares with
onestandard deviation error bars, and our data in two redshift bins as black
squares (the squares are positioned at the mean value within the redshift bin,
the vertical bars show the 50% range and the horizontal bars show the full
redshift range of the bin. For comparison,we plot the mean, 50% value range
(vertical bars) and redshift range (horizontal range) of rotation dominated
galaxies in other IFU surveys: KMOS3D (orange diamonds, Wisnioski
et al. 2015); KROSS (blue circles, Stott et al. 2016); AMAZE-LSD (green
triangles, Gnerucci et al. 2011); MASSIV (red right triangles, Epinat
et al. 2012); SINS (purple pentagons, Förster Schreiber et al. 2009); GHASP
(brown triangles, Epinat et al. 2008a, 2008b); and DYNAMO (pink left
triangle, Green et al. 2014). We show draws from the MCMC samples for the
redshift and mass dependent fit to our data as gray lines (described in
Section 4.4) and give the fitted exponents for redshift and stellar mass
evolution. The trend in sVmax 0 is dominated by stellar mass for our sample and
an increase of velocity dispersion with increasing redshift is found for our
sample.

Figure 7. Stellar mass Tully–Fisher relation with Vmax for rotating galaxies in
our sample (kinematic classes 1 and 2). As before, the colors indicate the
kinematic classification. Objects with magnification m > 4 are excluded. For
comparison,we plot stellar mass Tully–Fisher relations from the literature over
a similar redshift range (red Conselice et al. 2005; Miller et al. 2011; Tiley
et al. 2016) and a ~z 0 relation (green dotted) from a compilation of data
(Rhee 2004; Pizagno et al. 2007; Reyes et al. 2011) produced by Tiley et al.
(2016). From Tiley et al. (2016),we show the fits to their full rotator sample
(dashed black) and their “disky” sample (dashed red), which is similar to our
regular rotator sample. The best-fit relation to our full sample of rotators (solid
black) is shallower than that of the regular rotators (solid red) and other
relations from the literature. Our best fit to the regular rotators is consistent with
those from the literature.
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We investigate the importance of rotational velocity in
supporting the sample in Figure 7. We plot the stellar mass
Tully–Fisher relation between M and Vmax. We plot only the
galaxies classified as rotating (classes 1 and 2) and exclude
fourhigh magnification objects due to the uncertainties in
deriving source plane velocities. For comparison, we plot best-
fit relations from the literature at similar redshifts (Conselice
et al. 2005; Miller et al. 2011; Tiley et al. 2016) and a ~z 0
relation from a compilation of data (Rhee 2004; Pizagno
et al. 2007; Reyes et al. 2011) produced by Tiley et al. (2016).
We see that the regularly rotating systems are closest to the
fiducial Tully–Fisher relation, while the irregularly rotating
systems are mostly scattered below the relation. While this is a
very small sample, it is consistent with the conclusions of Tiley
et al. (2016), which also found a large number of their rotating
sample offset below the ~z 0 relation, but present a “disky”
sub-sample (similar to our regular rotators),which lies closer to
the ~z 0 relation. Most previous studies on the Tully–Fisher
relation at ~z 1 (see also Di Teodoro et al. 2016) have
preselected galaxies with disk morphologies, and thus are
likely to miss objects such as those in our irregularly rotating
sample, which may not look like disks in photometric surveys
but have velocity gradients.

We fit a linear relation ( * = +( )M m V V clog log10 10 ,
where V* is the median velocity in the sample) with intrinsic
scatter σ, using a Bayesian technique with EMCEE (Foreman-
Mackey et al. 2013), to the total sample of 16 objects and to the
3 regular rotators only. For the total sample: * =Vlog 2.1310 ,

= -
+m 1.03 0.39

0.52, = -
+c 9.85 0.15

0.14,and s = -
+0.43 0.10

0.15. For the
regular rotators only: * =Vlog 2.1410 , = -

+m 4.66 1.38
1.62,

= -
+c 9.56 0.17

0.19,and s = -
+0.05 0.05

0.59. The regular rotator sample
best-fit relation is consistent with the plotted literature relations,
but with large uncertainty due to the small sample size. The full
sample is consistent with Tiley et al. (2016) and suggests an
additional source of support other than rotational velocity in the
irregularly rotating galaxies.

Higher velocity dispersion may provide increased pressure
support in disks, to investigate this, we attempt to fit a similar
relation between stellar mass and s= +S V 20.5 max

2
0
2 as

introduced by Kassin et al. (2007) to the sample in Figure 7.
Kassin et al. (2007) found reduced intrinsic scatter when
including velocity dispersion. For the total sample, our best-fit
relation is * =Slog 1.9910 0.5 , = -

+m 1.19 0.47
0.65, = -

+c 9.82 0.15
0.14, and

s = -
+0.42 0.10

0.15. There is no significant decrease in intrinsic
scatter between the pure velocity and S0.5 Tully–Fisher relations
for our sample. Thus it is unclear that intrinsic velocity
dispersion provides significant pressure support to the systems
presented here.

We urge caution before over-interpreting these plots, which
are influenced strongly by the selection sample and other
potential biases of our small sample, including uncertainties in
the magnification models. It is clear that there is much
observational work to be done to build large representative
samples to further investigate redshift trends of kinematic
properties.

5. Discussion

5.1. What is the Dynamical Nature of Galaxies at z 1?

Integral fields surveys (Flores et al. 2006; Forster Schreiber
et al. 2006; Genzel et al. 2011; Gnerucci et al. 2011) of
~ –z 1 3 galaxies have found rotation dominated systems,

dispersion-dominated systems, and merging/irregular systems,
in roughly equal proportions. High-redshiftdisks were
expected to be highly turbulent becauserotation dominated
systems had systematically higher velocity dispersions than
local disks (Bershady et al. 2010; Epinat et al. 2010). This is in
contrast to the local universe where most objects with stellar
mass over M1010 are dispersion-dominated ellipticals, the
highest mass objects at z 1 were rotating disks.
Our sample shows a large diversity in the kinematic nature of

galaxies at z 1. The higher spatial resolution of KLASS
compared to field surveys, due to the boost from lensing, has
enabled us to clearly resolve rotating objects in our sample. The
majority of our sample is rotation supported (16/25), but we find
justification to define two rotation supported sub-samples: (1)
regular rotators (three objects),which are kinematically regular,
with mean s = V 12.7 2.4max 0 , similar to values for local
disks (Epinat et al. 2010), and (2) irregular rotators with more
disturbed kinematics and lower mean s = V 5.5 0.5max 0 ,
suggesting dynamically hotter disks. This small fraction of
galaxies exhibiting regular rotation was also seen recently in
Leethochawalit et al. (2016a) using AO observations of lensed
galaxies. Galaxies at high redshift are likely ongoing morpholo-
gical and kinematic changes before settling into the bimodality we
see in the local universe.

5.2. Revealing the Kinematics of Low-mass Galaxies

Gravitational lensing gives us access to the low-mass
galaxies missing from other surveys: KLASS has resolved
kinematics in fivegalaxies at >z 1 with stellar mass below

´ M6.3 108 , lower than any previously studied.
From the kinematic maps (Figures 8–11) and Figure 5, we see

that none of these low-mass galaxies are regularly rotating: two
are irregular rotators (MACS1149_1757 and RXJ1347_1230),
one is dispersion-dominated (MACS0416_706), and twohave
unknown/merging kinematic structure (MACS1149_683 and
MACS1149_1237). In Figure 5 (right panels), we show that
these systems also have sSFR > -1 Gyr 1. Our data suggest
thatthe turbulent nature of star formation in low-mass galaxies
effects the kinematics of the whole galaxy: these low-mass
galaxies are all kinematically disturbed and rapidly star-forming.

5.3. What are Dispersion-dominated Galaxies?

High-redshift dispersion-dominated systems were first seen
by Erb et al. (2006). This population has been observed at
stellar mass ranges of~ ´ – M1 5 1010 (the majority of high-
mass objects are observed with dominant rotation), and the
number density of the population increases with redshift (Law
et al. 2007, 2009; Epinat et al. 2012; Newman et al. 2013).
The formation and evolution history of these objects is a
relative mystery: perhaps formed by the collapse of a single
molecular cloud; will they grow to large elliptical galaxies at
low redshift, via mergers, or will they fade to remain
relatively low mass?
High spatial resolution is needed to clearly distinguish

rotationally supported galaxies from mergers and pressure
supported systems. AO on Keck/OSIRIS and VLT/
SINFONI have enabled high spatial resolution spectroscopy
(  ~0. 2 1.7 kpc at ~z 1) of a handful of ~ –z 1 3 galaxies,
including objects that are gravitationally lensed and an order of
magnitude lower in stellar mass than unlensed objects (Jones
et al. 2010; Livermore et al. 2015). These studies indicated that
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high fractions of rotating galaxies would be misclassified as
dispersion-dominated at seeing-limited resolution. This was
confirmed with AO followed of SINS galaxies: Newman et al.
(2013) found the fraction of dispersion-dominated systems in
their sample dropped from 41% to –6% 9% when these galaxies
were observed with AO. Additionally, surveys with AO
(Gnerucci et al. 2011) and lensing (Leethochawalit
et al. 2016a) have also shown that galaxies classified as
rotators in seeing-limited conditions have irregular velocity
maps when observed with higher spatial resolution.

It is likely that the population of rotation dominated systems
may be overestimated by low-resolution spectroscopy: most of
these objects are compact with little resolved velocity
information and highly affected by beam smearing, which
systematically increases velocity dispersion within the PSF. In
our sample, which has a median spatial resolution of
 ~0. 4 3.3 kpc at ~z 1 after accounting for magnification,
we find an upper limit of 3/25 dispersion-dominated galaxies.
This is consistent with the values of 6%–9% from AO surveys
(Jones et al. 2010; Newman et al. 2013; Livermore et al. 2015)
and lower than the fraction in KMOS3D and KROSS (~17% at
~ –z 1 2): lensing is able to resolve kinematics on a comparable

scale to AO.
The three dispersion-dominated galaxies in our sample are

extremely different from each other—one is very low mass
(MACS0416_706,  =Mlog 8.31), one is intermediate
mass (MACS0416_94,  =Mlog 9.88),and the other ishigh
mass (MACS1149_1644,  =Mlog 10.48). The velocity dis-
persion of MACS1149_1644 is the highest in the sample
(200± 12 km s−1) and much more like dispersion-dominated
systems in previous work. This object has a low sSFR

~ -0.2Gyr 1 and could be a galaxy falling off the main sequence
of star formation. MACS0416_94 has a low measured velocity
dispersion (<38 km s−1 after correcting for instrumental
resolution and beam smearing) and relatively high sSFR
~ -2Gyr 1. MACS0416_706 is a compact low-mass galaxy at
z = 1.35 also with a very low measured velocity dispersion of
<36 km s−1, and high sSFR ~ -3 Gyr 1 and may represent a
new class of low-mass compact dispersion-dominated objects,
forming an elliptical structure in situ, which are undetected in
surveys lacking the increase in depth and resolution that
gravitational lensing provides in KLASS.

6. Conclusions

We have presented the first results from KLASS, showcasing
KMOS IFU spectroscopy of 32 gravitationally lensed galaxies
at cosmic noon. Our key findings are as follows.

1. Emission line flux measured with KMOS is consistent
with measurements of the same emission lines in the HST
G102 and G141 grisms. This is in contrast to the recent
follow-up of HST grism-selected objects with slit-based
spectrographs. Using simulated slits, we find that slits
recover only ~60% of the flux compared to KMOS, and
this fraction declines rapidly if the emission line is offset
from the center of the slit.

2. In 25 of the 32 galaxies presented here, we obtain high S/N
kinematic maps, which show a diversity in kinematic
structure. The majority of unresolved galaxies are in the
field with the shortest integration time. The majority of our
sample with resolved kinematics have s >V 1max 0
suggesting that they are rotation dominated.

Figure 8. HSTRGB composite images, KMOS YJ continuum flux, 2D emission line spectra and velocity maps for the regular rotators class 1 of galaxies in KLASS,
ordered by stellar mass. All maps are on the same spatial scale. The vertical white bar indicates 1 in the image plane and the horizontal white bar indicates 1 kpc in the
source plane (or 100 pc if indicated in cases of high magnification).
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Figure 9. HSTRGB composite images, KMOS YJ continuum flux, 2D emission line spectra and velocity maps for the irregular rotators class 2 of galaxies in KLASS,
ordered by stellar mass. All scales and labels are the same as in the above figures.
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3. 3/25 of the resolved galaxies are classified as regularly
ordered rotators with mean s = V 12.7 2.4max 0 , simi-
lar to local disks, but existing only at stellar
masses > ´ M3 109 .

4. 13/25 of the resolved galaxies are classified as irregularly
rotating systems. The mean s = V 5.5 0.5max 0 for
these systems is lower than most disks in the local

universe, indicating that these are relatively turbulent
“hot” disks. Trends in sVmax 0 are dominated by
stellar mass.

5. With the power of lensing, we have resolved kinematics
in galaxies with stellar masses below> ´ M3 109 , none
of which are regularly rotating and which have high
sSFRs, indicating ongoing kinematic and morphological

Figure 9. (Continued.)
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changes. Five galaxies in our sample have stellar masses
below ´ M6.3 108 , the lowest stellar mass objects at
>z 1 ever observed with resolved kinematics.

6. We find a lower fraction of dispersion-dominated systems
compared to comparable surveys in blank fields. This is
likely because the enhanced spatial resolution from
lensing allows us to resolve velocity gradients in more
compact systems consistent with results from surveys
using AO.

Using the power of cluster lensing, we have been able to
efficiently resolve kinematics in objects at lower stellar
masses than comparable multi-object IFU surveys, and at
higher spatial resolution. We have seen a diversity in
kinematic features for our sample, but find that only the
highest mass objects form regular rotating disks at z 1,
while lower mass galaxies are irregularly rotating or likely to
be involved in mergers.

When the full survey is complete, KLASS will provide
kinematics of ∼60 galaxies at cosmic noon. Benefiting from
10 hr final integration times, we expect to be able to resolve
velocity gradients at the edges of the objects and produce
rotation curves to large radii for our wide range of
stellar mass.
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Appendix A
Kinematic Maps

The resolved high S/N kinematics maps for our sample are
shown in Figures 8–11. The procedure for producing the maps
is described in Section 4.3.

Figure 10. HSTRGB composite images, KMOS YJ continuum flux, 2D emission line spectra and velocity maps for the dispersion-dominated class 3 of galaxies in
KLASS, ordered by stellar mass. All scales and labels are the same as in the above figures.
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We also show the HSTRGB images for each galaxy. For
MACS0416 and MACS1149, RGB images are produced using the
HFF data (Lotz et al. 2016) in HSTWFC3 filters F606W, F125W,
and F160W. For MACS2129 and RXJ1347, we use F606W,
F125W,and F160W data from CLASH (Postman et al. 2012).

Appendix B
Rotation Curves

Rotation curves for rotating disks in our sample are
presented in Figures 12–13 below. Rotation curves are obtained
using the procedure outlined in Section 4.3.

Figure 11. HSTRGB composite images, KMOS YJ continuum flux, 2D emission line spectra and velocity maps for the mergers and unknown class 4 of galaxies in
KLASS, ordered by stellar mass. All scales and labels are the same as in the above figures.

16

The Astrophysical Journal, 838:14 (19pp), 2017 March 20 Mason et al.



Figure 12. Rotation curves for the regular rotators class 1 of galaxies in KLASS. We plot the 2D measured velocity maps and convolved model velocity maps from
3D fitting to the data cube via GalPaK3D. We plot the rotation curve extracted from a one pixel slit along the kinematic major axis as indicated by the green solid lines
on the maps. We plot points from the measured map (green circles) and model map (purple squares, convolved with the 3D PSF and LSF kernel—see Section 4.3) and
100 sample line-of-sight model rotation curves drawn from the MCMC chain (gray lines). Solid horizontal black lines show the best-fit observed line of sight Vmax.
Dotted black vertical lines show the inferred best-fit half-light radii from GalPaK3D or from GALFIT to the HST images in the 2D kinematic fits if they are not strongly
lensed. Rotation curves are measured beyond r1 2 for the majority of objects.

Figure 13. Rotation curves for the irregular rotators class 2 of galaxies in KLASS, plotted in the same way as Figure 12. Models are either 3D (from GalPaK3D) or the
2D method described in Section 4.3.
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