147 research outputs found

    ECTRIMS/EAN consensus on vaccination in people with multiple sclerosis: Improving immunization strategies in the era of highly active immunotherapeutic drugs

    Get PDF
    Background: With the new highly active drugs available for people with multiple sclerosis (pwMS), vaccination becomes an essential part of the risk management strategy. / Objective: To develop a European evidence-based consensus for the vaccination strategy of pwMS who are candidates for disease-modifying therapies (DMTs). / Methods: This work was conducted by a multidisciplinary working group using formal consensus methodology. Clinical questions (defined as population, interventions, and outcomes) considered all authorized DMTs and vaccines. A systematic literature search was conducted and quality of evidence was defined according to the Oxford Centre for Evidence-Based Medicine Levels of Evidence. The recommendations were formulated based on the quality of evidence and the risk–benefit balance. / Results: Seven questions, encompassing vaccine safety, vaccine effectiveness, global vaccination strategy and vaccination in sub-populations (pediatric, pregnant women, elderly and international travelers) were considered. A narrative description of the evidence considering published studies, guidelines, and position statements is presented. A total of 53 recommendations were agreed by the working group after three rounds of consensus. / Conclusion: This first European consensus on vaccination in pwMS proposes the best vaccination strategy according to current evidence and expert knowledge, with the goal of homogenizing the immunization practices in pwMS

    2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA

    Get PDF
    Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication

    Infection of the Central Nervous System, Sepsis and Amyotrophic Lateral Sclerosis

    Get PDF
    Severe infections may lead to chronic inflammation in the central nervous system (CNS) which may in turn play a role in the etiopathogenesis of amyotrophic lateral sclerosis (ALS). The relentless progression and invasive supportive treatments of ALS may on the other hand induce severe infections among ALS patients.The present study included 4,004 ALS patients identified from the Swedish Patient Register during 1991-2007 and 20,020 age and sex matched general population controls. Conditional logistic regression was used to estimate the odds ratios (ORs) of ALS given a previous hospitalization for CNS infection or sepsis. Cox models were used to estimate the hazard ratios (HRs) of hospitalization for CNS infection or sepsis after ALS diagnosis. Overall, previous CNS infection (OR: 1.3, 95% confidence interval [CI]: 0.8, 2.4) or sepsis (OR: 1.2, 95% CI: 0.9, 1.6) was not associated with ALS risk. However, compared to ALS free individuals, ALS cases were more likely to be hospitalized for sepsis after diagnosis (HR: 2.6, 95% CI: 1.9, 3.5). We did not observe a higher risk of CNS infection after ALS diagnosis.Our results suggest that acute and severe infections unlikely contribute to the development of ALS; however, ALS patients are at a higher risk of sepsis after diagnosis, compared to ALS free individuals

    Resilience Management for Healthy Cities in a Changing Climate

    Get PDF
    Cities are experiencing multiple impacts from global environmental change, and the degree to which they will need to cope with and adapt to these challenges will continue to increase. We argue that a ‘complex systems and resilience management’ view may significantly help guide future urban development through innovative integration of, for example, grey, blue and green infrastructure embedded in flexible institutions (both formal and informal) for multi-functionality and improved health. For instance, the urban heat island effect will further increase city-centre temperatures during projected more frequent and intense heat waves. The elderly and people with chronic cardiovascular and respiratory diseases are particularly vulnerable to heat. Integrating vegetation and especially trees in the urban infrastructure helps reduce temperatures by shading and evapotranspiration. Great complexity and uncertainty of urban social-ecological systems are behind this heatwave-health nexus, and they need to be addressed in a more comprehensive manner. We argue that a systems perspective can lead to innovative designs of new urban infrastructure and the redesign of existing structures. Particularly to promoting the integration of grey, green and blue infrastructure in urban planning through institutional innovation and structural reorganization of knowledge-action systems may significantly enhance prospects for improved urban health and greater resilience under various scenarios of climate change.info:eu-repo/semantics/publishedVersio

    Single-subject structural cortical networks in clinically isolated syndrome

    Get PDF
    BACKGROUND: Structural cortical networks (SCNs) represent patterns of coordinated morphological modifications in cortical areas, and they present the advantage of being extracted from previously acquired clinical magnetic resonance imaging (MRI) scans. SCNs have shown pathophysiological changes in many brain disorders, including multiple sclerosis. OBJECTIVE: To investigate alterations of SCNs at the individual level in patients with clinically isolated syndrome (CIS), thereby assessing their clinical relevance. METHODS: We analyzed baseline data collected in a prospective multicenter (MAGNIMS) study. CIS patients (n = 60) and healthy controls (n = 38) underwent high-resolution 3T MRI. Measures of disability and cognitive processing were obtained for patients. Single-subject SCNs were extracted from brain 3D-T1 weighted sequences; global and local network parameters were computed. RESULTS: Compared to healthy controls, CIS patients showed altered small-world topology, an efficient network organization combining dense local clustering with relatively few long-distance connections. These disruptions were worse for patients with higher lesion load and worse cognitive processing speed. Alterations of centrality measures and clustering of connections were observed in specific cortical areas in CIS patients when compared with healthy controls. CONCLUSION: Our study indicates that SCNs can be used to demonstrate clinically relevant alterations of connectivity in CIS

    Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. The pathological hallmark of PD is neuronal inclusions termed Lewy bodies whose main component is alpha-synuclein protein. The finding of these Lewy bodies in the intestinal enteric nerves led to the hypothesis that the intestine might be an early site of PD disease in response to an environmental toxin or pathogen. One potential mechanism for environmental toxin(s) and proinflammatory luminal products to gain access to mucosal neuronal tissue and promote oxidative stress is compromised intestinal barrier integrity. However, the role of intestinal permeability in PD has never been tested. We hypothesized that PD subjects might exhibit increased intestinal permeability to proinflammatory bacterial products in the intestine. To test our hypothesis we evaluated intestinal permeability in subjects newly diagnosed with PD and compared their values to healthy subjects. In addition, we obtained intestinal biopsies from both groups and used immunohistochemistry to assess bacterial translocation, nitrotyrosine (oxidative stress), and alpha-synuclein. We also evaluated serum markers of endotoxin exposure including LPS binding protein (LBP). Our data show that our PD subjects exhibit significantly greater intestinal permeability (gut leakiness) than controls. In addition, this intestinal hyperpermeability significantly correlated with increased intestinal mucosa staining for E. coli bacteria, nitrotyrosine, and alpha-synuclein as well as serum LBP levels in PD subjects. These data represent not only the first demonstration of abnormal intestinal permeability in PD subjects but also the first correlation of increased intestinal permeability in PD with intestinal alpha-synuclein (the hallmark of PD), as well as staining for gram negative bacteria and tissue oxidative stress. Our study may thus shed new light on PD pathogenesis as well as provide a new method for earlier diagnosis of PD and suggests potential therapeutic targets in PD subjects.Clinicaltrials.gov NCT01155492

    Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression

    Get PDF
    Background and Objectives: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. Methods: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. Results: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. Conclusions: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS

    Persistence on therapy and propensity matched outcome comparison of two subcutaneous interferon beta 1a dosages for multiple sclerosis

    Get PDF
    To compare treatment persistence between two dosages of interferon β-1a in a large observational multiple sclerosis registry and assess disease outcomes of first line MS treatment at these dosages using propensity scoring to adjust for baseline imbalance in disease characteristics. Treatment discontinuations were evaluated in all patients within the MSBase registry who commenced interferon β-1a SC thrice weekly (n = 4678). Furthermore, we assessed 2-year clinical outcomes in 1220 patients treated with interferon β-1a in either dosage (22 µg or 44 µg) as their first disease modifying agent, matched on propensity score calculated from pre-treatment demographic and clinical variables. A subgroup analysis was performed on 456 matched patients who also had baseline MRI variables recorded. Overall, 4054 treatment discontinuations were recorded in 3059 patients. The patients receiving the lower interferon dosage were more likely to discontinue treatment than those with the higher dosage (25% vs. 20% annual probability of discontinuation, respectively). This was seen in discontinuations with reasons recorded as “lack of efficacy” (3.3% vs. 1.7%), “scheduled stop” (2.2% vs. 1.3%) or without the reason recorded (16.7% vs. 13.3% annual discontinuation rate, 22 µg vs. 44 µg dosage, respectively). Propensity score was determined by treating centre and disability (score without MRI parameters) or centre, sex and number of contrast-enhancing lesions (score including MRI parameters). No differences in clinical outcomes at two years (relapse rate, time relapse-free and disability) were observed between the matched patients treated with either of the interferon dosages. Treatment discontinuations were more common in interferon β-1a 22 µg SC thrice weekly. However, 2-year clinical outcomes did not differ between patients receiving the different dosages, thus replicating in a registry dataset derived from “real-world” database the results of the pivotal randomised trial. Propensity score matching effectively minimised baseline covariate imbalance between two directly compared sub-populations from a large observational registry
    • …
    corecore