611 research outputs found

    Neutron diffraction investigation of the H-T phase diagram above the longitudinal incommensurate phase of BaCo2V2O8

    Full text link
    The quasi-one-dimensional antiferromagnetic Ising-like compound BaCo2V2O8 has been shown to be describable by the Tomonaga-Luttinger liquid theory in its gapless phase induced by a magnetic field applied along the Ising axis. Above 3.9 T, this leads to an exotic field-induced low-temperature magnetic order, made of a longitudinal incommensurate spin-density wave, stabilized by weak interchain interactions. By single-crystal neutron diffraction we explore the destabilization of this phase at a higher magnetic field. We evidence a transition at around 8.5 T towards a more conventional magnetic structure with antiferromagnetic components in the plane perpendicular to the magnetic field. The phase diagram boundaries and the nature of this second field-induced phase are discussed with respect to previous results obtained by means of nuclear magnetic resonance and electron spin resonance, and in the framework of the simple model based on the Tomonaga-Luttinger liquid theory, which obviously has to be refined in this complex system.Comment: 7 pages, 5 figure

    Field-induced magnetic behavior in quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8: A single-crystal neutron diffraction study

    Full text link
    BaCo2V2O8 is a nice example of a quasi-one-dimensional quantum spin system that can be described in terms of Tomonaga-Luttinger liquid physics. This is explored in the present study where the magnetic field-temperature phase diagram is thoroughly established up to 12 T using single-crystal neutron diffraction. The transition from the N\'eel phase to the incommensurate longitudinal spin density wave (LSDW) phase through a first-order transition, as well as the critical exponents associated with the paramagnetic to ordered phase transitions, and the magnetic order both in the N\'eel and in the LSDW phase are determined, thus providing a stringent test for the theory.Comment: 17 pages with 15 figure

    Magnetic frustration in an iron based Cairo pentagonal lattice

    Get PDF
    The Fe3+ lattice in the Bi2Fe4O9 compound is found to materialize the first analogue of a magnetic pentagonal lattice. Due to its odd number of bonds per elemental brick, this lattice, subject to first neighbor antiferromagnetic interactions, is prone to geometric frustration. The Bi2Fe4O9 magnetic properties have been investigated by macroscopic magnetic measurements and neutron diffraction. The observed non-collinear magnetic arrangement is related to the one stabilized on a perfect tiling as obtained from a mean field analysis with direct space magnetic configurations calculations. The peculiarity of this structure arises from the complex connectivity of the pentagonal lattice, a novel feature compared to the well-known case of triangle-based lattices

    Hierarchical geometric frustration in La3Cu2VO9

    Full text link
    The crystallographic structure and magnetic properties of the La3Cu2VO9 were investigated by powder neutron diffraction and magnetization measurements. The compound materializes geometric frustration at two spatial scales, within clusters and between clusters, and at different temperature scales. It is shown by exactly solving the hamiltonian spectrum that collective spins are formed on each clusters at low temperature before inter-clusters coupling operates.Comment: 6 pages, 4 figures. HFM2006 proceeding pape

    Inhomogeneous magnetism in the doped kagome lattice of LaCuO2.66

    Full text link
    The hole-doped kagome lattice of Cu2+ ions in LaCuO2.66 was investigated by nuclear quadrupole resonance (NQR), electron spin resonance (ESR), electrical resistivity, bulk magnetization and specific heat measurements. For temperatures above ~180 K, the spin and charge properties show an activated behavior suggestive of a narrow-gap semiconductor. At lower temperatures, the results indicate an insulating ground state which may or may not be charge ordered. While the frustrated spins in remaining patches of the original kagome lattice might not be directly detected here, the observation of coexisting non-magnetic sites, free spins and frozen moments reveals an intrinsically inhomogeneous magnetism. Numerical simulations of a 1/3-diluted kagome lattice rationalize this magnetic state in terms of a heterogeneous distribution of cluster sizes and morphologies near the site-percolation threshold

    Targeted education improves the very low recognition of vertebral fractures and osteoporosis management by general internists

    Get PDF
    Introduction: Vertebral fractures in older persons are strong predictors of subsequent fracture risk but remain largely under-recognized. To evaluate the impact of an educational intervention on the recognition of vertebral fractures and the prescription of anti-osteoporosis treatment among general internists, we conducted a prospective study in a service of general internal medicine of a large university teaching hospital in Geneva, Switzerland. During a 3.5-month observation period (phase1), all lateral spinal or chest radiographs performed on consecutive inpatients over 60 years were reviewed by two independent investigators, and vertebral fractures were graded according to their severity. Methods: Results were compared with radiology reports and general internists' discharge summaries. During the following 2-month intervention period (phase2), internists were actively educated about vertebral fracture identification by means of lectures, posters and flyers. Radiologists did not receive this educational strategy and served as controls. Results: Among 292 consecutive patients (54% men; range: 60-97 years) included in phase1, 85 (29%) were identified by investigators as having at least one vertebral fracture; radiologists detected 29 (34%), and internists detected 19 (22%). During the intervention phase, 58 (34%) of 172 patients were identified with vertebral fractures by investigators; radiologists detected 13 patients (22%) whereas among internists the detection rate almost doubled (25/58 patients, 43%; p=0.008 compared to phase1). The percentage of patients with vertebral fracture who benefitted from an osteoporosis medical management increased from 11% (phase1) to 40% (phase2, p<0.03). Conclusions: Our findings confirm the large under-recognition of vertebral fractures, irrespective of their severity, and demonstrate that a simple educational strategy can significantly improve their detection on routine radiographs and, consequently, improve osteoporosis managemen

    Formation of collective spins in frustrated clusters

    Get PDF
    Using magnetization, specific heat and neutron scattering measurements, as well as exact calculations on realistic models, the magnetic properties of the \lacuvo compound are characterized on a wide temperature range. At high temperature, this oxide is well described by strongly correlated atomic SS=1/2 spins while decreasing the temperature it switches to a set of weakly interacting and randomly distributed entangled pseudo spins S~=1/2\tilde S=1/2 and S~=0\tilde S=0. These pseudo-spins are built over frustrated clusters, similar to the kagom\'e building block, at the vertices of a triangular superlattice, the geometrical frustration intervening then at different scales.Comment: 10 page

    Lattice and spin excitations in multiferroic h-YMnO3

    Full text link
    We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling
    corecore