12,743 research outputs found

    Simulated breath waveform control

    Get PDF
    Subsystem was developed which provides twelve waveform controls to breath drive mechanism. Twelve position, magnetically actuated rotary switch is connected to one end of crankshaft drive, such that it makes one complete revolution for each simulated breath. Connections with common wired point are included in modifications made to standard motor speed controller

    Enhanced vaccine control of epidemics in adaptive networks

    Get PDF
    We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to an interaction between the adaptive network rewiring and the vaccine application. Disease extinction rates using vaccination are computed, and orders of magnitude less vaccine application is needed to drive the disease to extinction in an adaptive network than in a static one

    Magnetic resonance imaging (MRI) of heavy-metal transport and fate in an artificial biofilm

    Get PDF
    Unlike planktonic systems, reaction rates in biofilms are often limited by mass transport, which controls the rate of supply of contaminants into the biofilm matrix. To help understand this phenomenon, we investigated the potential of magnetic resonance imaging (MRI) to spatially quantify copper transport and fate in biofilms. For this initial study we utilized an artificial biofilm composed of a 50:50 mix of bacteria and agar. MRI successfully mapped Cu2+ uptake into the artificial biofilm by mapping T2 relaxation rates. A calibration protocol was used to convert T2 values into actual copper concentrations. Immobilization rates in the artificial biofilm were slow compared to the rapid equilibration of planktonic systems. Even after 36 h, the copper front had migrated only 3 mm into the artificial biofilm and at this distance from the copper source, concentrations were very low. This slow equilibration is a result of (1) the time it takes copper to diffuse over such distances and (2) the adsorption of copper onto cell surfaces, which further impedes copper diffusion. The success of this trial run indicates MRI could be used to quantitatively map heavy metal transport and immobilization in natural biofilms

    An SZ/X-ray galaxy cluster model and the X-ray follow-up of the Planck clusters

    Full text link
    Sunyaev-Zel'dovich (SZ) cluster surveys will become an important cosmological tool over next few years, and it will be essential to relate these new surveys to cluster surveys in other wavebands. We present an empirical model of cluster SZ and X-ray observables constructed to address this question and to motivate, dimension and guide X-ray follow-up of SZ surveys. As an example application of the model, we discuss potential XMM-Newton follow-up of Planck clusters.Comment: 4 pages, 5 figures. To appear in the proceedings of the XXXXIIIrd Rencontres de Morion

    Breathing-metabolic simulator

    Get PDF
    Breathing-metabolic simulator was developed to be used for evaluation of life support equipment. Apparatus simulates human breathing rate and controls temperature and humidity of exhaled air as well as its chemical composition. All functions are designed to correspond to various degrees of human response

    Drive mechanism for production of simulated human breath

    Get PDF
    Simulated breath drive mechanism was developed as subsystem to breathing metabolic simulator. Mechanism reproduces complete range of human breath rate, breath depth, and breath waveform, as well as independently controlled functional residual capacity. Mechanism was found capable of simulating various individual human breathing characteristics without any changes of parts

    ^{63}Cu, ^{35}Cl, and ^{1}H NMR in the S=1/2 Kagom\'e Lattice ZnCu_{3}(OH)_{6}Cl_{2}

    Full text link
    ZnCu3_{3}(OH)6_{6}Cl2_{2} (S=1/2S=1/2) is a promising new candidate for an ideal Kagom\'e Heisenberg antiferromagnet, because there is no magnetic phase transition down to \sim50 mK. We investigated its local magnetic and lattice environments with NMR techniques. We demonstrate that the intrinsic local spin susceptibility {\it decreases} toward T=0, but that slow freezing of the lattice near \sim50 K, presumably associated with OH bonds, contributes to a large increase of local spin susceptibility and its distribution. Spin dynamics near T=0 obey a power-law behavior in high magnetic fields.Comment: Phys. Rev. Lett. (in press

    Time-resolved extinction rates of stochastic populations

    Full text link
    Extinction of a long-lived isolated stochastic population can be described as an exponentially slow decay of quasi-stationary probability distribution of the population size. We address extinction of a population in a two-population system in the case when the population turnover -- renewal and removal -- is much slower than all other processes. In this case there is a time scale separation in the system which enables one to introduce a short-time quasi-stationary extinction rate W_1 and a long-time quasi-stationary extinction rate W_2, and develop a time-dependent theory of the transition between the two rates. It is shown that W_1 and W_2 coincide with the extinction rates when the population turnover is absent, and present but very slow, respectively. The exponentially large disparity between the two rates reflects fragility of the extinction rate in the population dynamics without turnover.Comment: 8 pages, 4 figure

    Adaptive Measurements in the Optical Quantum Information Laboratory

    Get PDF
    Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected Topics in Quantum Electronics: Quantum Communications and Information Scienc

    MACiE: a database of enzyme reaction mechanisms.

    Get PDF
    SUMMARY: MACiE (mechanism, annotation and classification in enzymes) is a publicly available web-based database, held in CMLReact (an XML application), that aims to help our understanding of the evolution of enzyme catalytic mechanisms and also to create a classification system which reflects the actual chemical mechanism (catalytic steps) of an enzyme reaction, not only the overall reaction. AVAILABILITY: http://www-mitchell.ch.cam.ac.uk/macie/.EPSRC (G.L.H. and J.B.O.M.), the BBSRC (G.J.B. and J.M.T.—CASE studentship in association with Roche Products Ltd; N.M.O.B. and J.B.O.M.—grant BB/C51320X/1), the Chilean Government’s Ministerio de Planificacio´n y Cooperacio´n and Cambridge Overseas Trust (D.E.A.) for funding and Unilever for supporting the Centre for Molecular Science Informatics.application note restricted to 2 printed pages web site: http://www-mitchell.ch.cam.ac.uk/macie
    corecore