6,148 research outputs found

    The role of active galactic nuclei in galaxy formation

    Full text link
    We use Monte-Carlo Markov chain techniques to constrain acceptable parameter regions for the Munich L-Galaxies semi-analytic galaxy formation model. Feedback from active galactic nuclei (AGN) is required to limit star-formation in the most massive galaxies. However, we show that the introduction of tidal stripping of dwarf galaxies as they fall into and merge with their host systems can lead to a reduction in the required degree of AGN feedback. In addition, the new model correctly reproduces both the metallicity of large galaxies and the fraction of intracluster light.Comment: Monster's Fiery Breath Conference Proceedings, 4 page

    Exact Solutions for Boson-Fermion Stars in (2+1) dimensions

    Get PDF
    We solve Einstein equations coupled to a complex scalar field with infinitely large self-interaction, degenerate fermions, and a negative cosmological constant in (2+1)(2+1) dimensions. Exact solutions for static boson-fermion stars are found when circular symmetry is assumed. We find that the minimum binding energy of boson-fermion star takes a negative value if the value of the cosmological constant is sufficiently small.Comment: 19 pages, 5 figures, RevTeX 3.0, second revised versio

    Quasi-complete intersection homomorphisms

    Get PDF
    Extending a notion defined for surjective maps by Blanco, Majadas, and Rodicio, we introduce and study a class of homomorphisms of commutative noetherian rings, which strictly contains the class of locally complete intersection homomorphisms, while sharing many of its remarkable properties.Comment: Final version, to appear in the special issue of Pure and Applied Mathematics Quarterly dedicated to Andrey Todorov. The material in the first four sections has been reorganized and slightly expande

    Gravitational wave generation in hybrid quintessential inflationary models

    Full text link
    We investigate the generation of gravitational waves in the hybrid quintessential inflationary model. The full gravitational-wave energy spectrum is calculated using the method of continuous Bogoliubov coefficients. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a peak at high frequencies. The maximum of the peak is firmly located at the MHz-GHz region of the spectrum and corresponds to ΩGW1012\Omega_{GW} \simeq 10^{-12}. This peak is substantially smaller than the one appearing in the gravitational-wave energy spectrum of the original quintessential inflationary model, therefore avoiding any conflict with the nucleosynthesis constraint on \Omega_\Omega_{GW}.Comment: 10 pages, 11 figures, one reference adde

    Gravitational waves in hybrid quintessential inflationary models

    Get PDF
    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Omega(GW) at high frequencies. For appropriate values of the parameters of the model, Omega(GW) can be as high as 10(-12) in the MHz-GHz range of frequencies.Fundacao para a Ciencia e a Tecnologia, Portuga

    Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation

    Get PDF
    We present a statistical exploration of the parameter space of the De Lucia and Blaizot version of the Munich semi-analytic (SA) model built upon the Millennium dark matter simulation. This is achieved by applying a Monte Carlo Markov Chain method to constrain the six free parameters that define the stellar and black hole mass functions at redshift zero. The model is tested against three different observational data sets, including the galaxy K-band luminosity function, B - V colours and the black hole-bulge mass relation, separately and combined, to obtain mean values, confidence limits and likelihood contours for the best-fitting model. Using each observational data set independently, we discuss how the SA model parameters affect each galaxy property and find that there are strong correlations between them. We analyse to what extent these are simply reflections of the observational constraints, or whether they can lead to improved understandings of the physics of galaxy formation. When all the observations are combined, we find reasonable agreement between the majority of the previously published parameter values and our confidence limits. However, the need to suppress dwarf galaxy formation requires the strength of the supernova feedback to be significantly higher in our best-fitting solution than in previous work. To balance this, we require the feedback to become ineffective in haloes of lower mass than before, so as to permit the formation of sufficient high-luminosity galaxies: unfortunately, this leads to an excess of galaxies around L*. Although the best fit is formally consistent with the data, there is no region of parameter space that reproduces the shape of galaxy luminosity function across the whole magnitude range. For our best fit, we present the model predictions for the bJ-band luminosity and stellar mass functions. We find a systematic disagreement between the observed mass function and the predictions from the K-band constraint, which we explain in light of recent works that suggest uncertainties of up to 0.3 dex in the mass determination from stellar population synthesis models. We discuss modifications to the SA model that might simultaneously improve the fit to the observed mass function and reduce the reliance on excessive supernova feedback in small haloes

    Diffusion anomaly and dynamic transitions in the Bell-Lavis water model

    Full text link
    In this paper we investigate the dynamic properties of the minimal Bell-Lavis (BL) water model and their relation to the thermodynamic anomalies. The Bell-Lavis model is defined on a triangular lattice in which water molecules are represented by particles with three symmetric bonding arms interacting through van der Waals and hydrogen bonds. We have studied the model diffusivity in different regions of the phase diagram through Monte Carlo simulations. Our results show that the model displays a region of anomalous diffusion which lies inside the region of anomalous density, englobed by the line of temperatures of maximum density (TMD). Further, we have found that the diffusivity undergoes a dynamic transition which may be classified as fragile-to-strong transition at the critical line only at low pressures. At higher densities, no dynamic transition is seen on crossing the critical line. Thus evidence from this study is that relation of dynamic transitions to criticality may be discarded

    Supermassive black holes as the regulators of star formation in central galaxies

    Full text link
    We present a relationship between the black hole mass, stellar mass, and star formation rate of a diverse group of 91 galaxies with dynamically-measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific star formation rate is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy's star formation activity results from the adjustment to an increase in specific black hole mass and, accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific star formation rates, implying that both transitioning and steady-state galaxies live within this region known as the "green valley." With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.Comment: 15 pages, 4 figures, 2 tables. Accepted for publication in The Astrophysical Journa
    corecore