1,803 research outputs found

    HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    Get PDF
    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activityinfo:eu-repo/semantics/publishedVersio

    Spitzer Mapping of PAHs and H2 in Photodissociation Regions

    Full text link
    The mid-infrared (MIR) spectra of dense photodissociation regions (PDRs) are typically dominated by emission from polycyclic aromatic hydrocarbons (PAHs) and the lowest pure rotational states of molecular hydrogen (H2); two species which are probes of the physical properties of gas and dust in intense UV radiation fields. We utilize the high angular resolution of the Infrared Spectrograph on the Spitzer Space Telescope to construct spectral maps of the PAH and H2 features for three of the best studied PDRs in the galaxy, NGC 7023, NGC 2023 and IC 63. We present spatially resolved maps of the physical properties, including the H2 ortho-to-para ratio, temperature, and G_o/n_H. We also present evidence for PAH dehydrogenation, which may support theories of H2 formation on PAH surfaces, and a detection of preferential self-shielding of ortho-H2. All PDRs studied exhibit average temperatures of ~500 - 800K, warm H2 column densities of ~10^20 cm^-2, G_o/n_H ~ 0.1 - 0.8, and ortho-to-para ratios of ~ 1.8. We find that while the average of each of these properties is consistent with previous single value measurements of these PDRs, when available, the addition of spatial resolution yields a diversity of values with gas temperatures as high as 1500 K, column densities spanning ~ 2 orders of magnitude, and extreme ortho-to-para ratios of 3.Comment: 14 figure

    Global fire activity patterns (1996-2006) and climatic influence: an analysis using World Fire Atlas

    Get PDF
    Vegetation fires have been acknowledged as an environmental process of global scale, which affects the chemical composition of the troposphere, and has profound ecological and climatic impacts. However, considerable uncertainty remains, especially concerning intra and inter-annual variability of fire incidence. The main goals of our globalscale study were to characterise spatial-temporal patterns of fire activity, to identify broad geographical areas with similar vegetation fire dynamics, and to analyse the relationship between fire activity and the El Ni˜no-Southern Oscillation. This study relies on 10 years (mid 1996–mid 2006) of screened European Space Agency World Fire Atlas (WFA) data, obtained from Along Track Scanning Radiometer (ATSR) and Advanced ATSR (AATSR) imagery. Empirical Orthogonal Function analysis was used to reduce the dimensionality of the dataset. Regions of homogeneous fire dynamics were identified with cluster analysis, and interpreted based on their eco-climatic characteristics. The impact of 1997–1998 El Ni˜no is clearly dominant over the study period, causing increased fire activity in a variety of regions and ecosystems, with variable timing. Overall, this study provides the first global decadal assessment of spatialtemporal fire variability and confirms the usefulness of the screened WFA for global fire ecoclimatology researc

    Hybrid Meson Decay Phenomenology

    Get PDF
    The phenomenology of a newly developed model of hybrid meson decay is developed. The decay mechanism is based on the heavy quark expansion of QCD and the strong coupling flux tube picture of nonperturbative glue. A comprehensive list of partial decay widths of a wide variety of light, ssˉs\bar s, ccˉc\bar c, and bbˉb \bar b hybrid mesons is presented. Results which appear approximately universal are highlighted along with those which distinguish different hybrid decay models. Finally, we examine several interesting hybrid candidates in detail.Comment: 37 pages, 2 figures, 6 tables, Revte

    Identification of patients with atrial fibrillation in UK community pharmacy: an evaluation of a new service

    Get PDF
    Background: Many patients with atrial fibrillation (AF) are asymptomatic and diagnosed via opportunistic screening. Community pharmacy has been advocated as a potential resource for opportunistic screening and lifestyle interventions.  Objective: The objective of this evaluation is to describe the outcomes from an AF service, in terms of referrals and interventions provided to patients identified as not at risk.  Method: Eligibility was assessed from pharmacy records and the completion of a short questionnaire. Once consented, patients were screened for AF and their blood pressure was measured.  Results: Of 594 patients screened, nine were identified as at risk of having AF and were referred to their GP. The service also identified 109 patients with undiagnosed hypertension, 176 patients with a Body Mass Index (BMI) > 30, 131 with an Audit-C score > 5 and 59 smokers. Pharmacists provided 413 interventions in 326 patients aimed at weight reduction (239), alcohol consumption (123) and smoking cessation (51).  Conclusion: This evaluation characterises the interventions provided to, not only those identified with the target condition - in this case AF - but also those without it. The true outcome of these additional interventions, along with appropriate follow-up, should be the focus of future studies.Impact of findings on patients or practice •Patients are willing to be screened for AF through community pharmacies•Screening can provide opportunities to identify other healthcare problems such a hypertension or poor lifestyle •Community pharmacists are able to provide brief advice to patients as a result of this opportunistic screenin

    The far-infrared/radio correlation and radio spectral index of galaxies in the SFR-M* plane up to z 2

    Get PDF
    [Abridged] We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate-stellar masse (i.e. SFR-M*) plane up to z 2. We start from a M*-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR-M* plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR-M*-z bin. The infrared luminosities of our SFR-M*-z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with Herschel. Their radio luminosities and radio spectral indices (i.e. alpha, where Snu nu^-alpha) are estimated using their stacked 1.4GHz and 610MHz flux densities from the VLA and GMRT, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields -GOODS-N/S, ECDFS, and COSMOS- covering a sky area of 2deg^2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M*>10^10Msun and 0<z<2.3. We find that alpha^1.4GHz_610MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR-M* plane (i.e. Delta_log(SSFR)_MS=log[SSFR(galaxy)/SSFR_MS(M*,z)]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that qFIR displays a moderate but statistically significant redshift evolution as qFIR(z)=(2.35+/-0.08)*(1+z)^(-0.12+/-0.04), consistent with some previous literature. Finally, we find no significant correlation between qFIR and Delta_log(SSFR)_MS, though a weak positive trend, as observed in one of our redshift bins, cannot be firmly ruled out using our dataset.Comment: Accepted for publication in A&A; 18 pages, 10 figure

    Panchromatic spectral energy distributions of Herschel sources

    Get PDF
    (abridged) Far-infrared Herschel photometry from the PEP and HerMES programs is combined with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields. Based on this rich dataset, we reproduce the restframe UV to FIR ten-colors distribution of galaxies using a superposition of multi-variate Gaussian modes. The median SED of each mode is then fitted with a modified version of the MAGPHYS code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an AGN. The defined Gaussian grouping is also used to identify rare sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z~1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eight other popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 micron detected sources in PEP GOODS fields. AGN appear to be distributed in the stellar mass (M*) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the "main sequence". The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the "off-sequence" region of the M*-SFR-z space.Comment: Accepted for publication in A&A. Some figures are presented in low resolution. The new galaxy templates are available for download at the address http://www.mpe.mpg.de/ir/Research/PEP/uvfir_temp

    The Specific Heat of Normal, Degenerate Quark Matter: Non-Fermi Liquid Corrections

    Full text link
    In normal degenerate quark matter, the exchange of dynamically screened transverse gluons introduces infrared divergences in the quark self-energies that lead to the breakdown of the Fermi liquid description. If the core of neutron stars are composed of quark matter with a normal component, cooling by direct quark Urca processes may be modified by non-Fermi liquid corrections. We find that while the quasiparticle density of states is finite and non-zero at the Fermi surface, its frequency derivative diverges and results in non-Fermi liquid corrections to the specific heat of the normal, degenerate component of quark matter. We study these non-perturbative non-Fermi liquid corrections to the specific heat and the temperature dependence of the chemical potential and show that these lead to a reduction of the specific heat.Comment: new discussion, updated references, accepted in PR
    corecore