288 research outputs found

    Stealthy Deception Attacks Against SCADA Systems

    Full text link
    SCADA protocols for Industrial Control Systems (ICS) are vulnerable to network attacks such as session hijacking. Hence, research focuses on network anomaly detection based on meta--data (message sizes, timing, command sequence), or on the state values of the physical process. In this work we present a class of semantic network-based attacks against SCADA systems that are undetectable by the above mentioned anomaly detection. After hijacking the communication channels between the Human Machine Interface (HMI) and Programmable Logic Controllers (PLCs), our attacks cause the HMI to present a fake view of the industrial process, deceiving the human operator into taking manual actions. Our most advanced attack also manipulates the messages generated by the operator's actions, reversing their semantic meaning while causing the HMI to present a view that is consistent with the attempted human actions. The attacks are totaly stealthy because the message sizes and timing, the command sequences, and the data values of the ICS's state all remain legitimate. We implemented and tested several attack scenarios in the test lab of our local electric company, against a real HMI and real PLCs, separated by a commercial-grade firewall. We developed a real-time security assessment tool, that can simultaneously manipulate the communication to multiple PLCs and cause the HMI to display a coherent system--wide fake view. Our tool is configured with message-manipulating rules written in an ICS Attack Markup Language (IAML) we designed, which may be of independent interest. Our semantic attacks all successfully fooled the operator and brought the system to states of blackout and possible equipment damage

    Typical local measurements in generalized probabilistic theories: emergence of quantum bipartite correlations

    Get PDF
    What singles out quantum mechanics as the fundamental theory of nature? Here we study local measurements in generalized probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalization of Dvoretzky’s theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.What singles out quantum mechanics as the fundamental theory of nature? Here we study local measurements in generalized probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalization of Dvoretzky’s theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however

    Spectroscopic Constraints on the Stellar Population of Elliptical Galaxies in the Coma Cluster

    Get PDF
    Near-IR spectra for a sample of 31 elliptical galaxies in the Coma cluster are obtained. The galaxies are selected to be ellipticals (no lenticulars), with a large spatial distribution, covering both the core and outskirt of the cluster (ie. corresponding to regions with large density contrasts). Spectroscopic CO (2.3 micron) absorption indices, measuring contribution from intermediate-age red giant and supergiant stars to the near-IR light of the ellipticals, are then estimated. It is found that the strength of spectroscopic CO features in elliptical galaxies increases from the core (r 0.2 deg) of the Coma cluster. Using the Mg2 strengths, it is shown that the observed effect is not due to metallicity and is mostly caused by the presence of a younger population (giant and supergiant stars) in ellipticals in outskirts (low density region) of the cluster. Using the spectroscopic CO features, the origin of the scatter on the near-IR Fundamental Plane of elliptical galaxies is studied. Correcting this relation for contributions from the red giant and supergiant stars, the rms scatter reduces from 0.077dex to 0.073dex. Although measurable, the contribution from these intermediate-age stars to the scatter on the near-IR Fundamental Plane of ellipticals is only marginal. A relation is found between the CO and V-K colours of ellipticals with a slope 0.036 +/- 0.016. This is studied using stellar synthesis models.Comment: 17 pages, 7 figures, Accepted for publication in MNRAS Repoprt-no

    Typical local measurements in generalised probabilistic theories: emergence of quantum bipartite correlations

    Get PDF
    What singles out quantum mechanics as the fundamental theory of Nature? Here we study local measurements in generalised probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalisation of Dvoretzky's theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.Comment: 5 pages, 1 figure v2: more details in the proof of the main resul

    Mid - infrared interferometry of massive young stellar objects II Evidence for a circumstellar disk surrounding the Kleinmann - Wright object

    Full text link
    The formation scenario for massive stars is still under discussion. To further constrain current theories, it is vital to spatially resolve the structures from which material accretes onto massive young stellar objects (MYSOs). Due to the small angular extent of MYSOs, one needs to overcome the limitations of conventional thermal infrared imaging, regarding spatial resolution, in order to get observational access to the inner structure of these objects.We employed mid - infrared interferometry, using the MIDI instrument on the ESO /VLTI, to investigate the Kleinmann - Wright Object, a massive young stellar object previously identified as a Herbig Be star precursor. Dispersed visibility curves in the N- band (8 - 13 {\mu}m) have been obtained at 5 interferometric baselines. We show that the mid - infrared emission region is resolved. A qualitative analysis of the data indicates a non - rotationally symmetric structure, e.g. the projection of an inclined disk. We employed extensive radiative transfer simulations based on spectral energy distribution fitting. Since SED - only fitting usually yields degenerate results, we first employed a statistical analysis of the parameters provided by the radiative transfer models. In addition, we compared the ten best - fitting self - consistent models to the interferometric observations. Our analysis of the Kleinmann - Wright Object suggests the existence of a circumstellar disk of 0.1M\odot at an intermediate inclination of 76\circ, while an additional dusty envelope is not necessary for fitting the data. Furthermore, we demonstrate that the combination of IR interferometry with radiative transfer simulations has the potential to resolve ambiguities arising from the analysis of spectral energy distributions alone.Comment: 12 pages, 22 figures accepted for publication in A&

    ESO Imaging Survey: infrared observations of CDF-S and HDF-S

    Get PDF
    This paper presents infrared data obtained from observations carried out at the ESO 3.5m New Technology Telescope (NTT) of the Hubble Deep Field South (HDF-S) and the Chandra Deep Field South (CDF-S). These data were taken as part of the ESO Imaging Survey (EIS) program, a public survey conducted by ESO to promote follow-up observations with the VLT. In the HDF-S field the infrared observations cover an area of ~53 square arcmin, encompassing the HST WFPC2 and STIS fields, in the JHKs passbands. The seeing measured in the final stacked images ranges from 0.79" to 1.22" and the median limiting magnitudes (AB system, 2" aperture, 5sigma detection limit) are J_AB~23.0, H_AB~22.8 and K_AB~23.0 mag. Less complete data are also available in JKs for the adjacent HST NICMOS field. For CDF-S, the infrared observations cover a total area of \~100 square arcmin, reaching median limiting magnitudes (as defined above) of J_AB~23.6 and K_AB~22.7 mag. For one CDF-S field H-band data are also available. This paper describes the observations and presents the results of new reductions carried out entirely through the un-supervised, high-throughput EIS Data Reduction System and its associated EIS/MVM C++-based image processing library developed, over the past 5 years, by the EIS project and now publicly available. The paper also presents source catalogs extracted from the final co-added images which are used to evaluate the scientific quality of the survey products, and hence the performance of the software. This is done comparing the results obtained in the present work with those obtained by other authors from independent data and/or reductions carried out with different software packages and techniques. The final science-grade catalogs and co-added images are available at CDS.Comment: Accepted for publication in A&A, 13 pages, 12 figures; a full resolution version of the paper is available from http://www.astro.ku.dk/~lisbeth/eisdata/papers/4528.pdf ; related catalogs and images are available through http://www.astro.ku.dk/~lisbeth/eisdata

    Separable Dual Space Gaussian Pseudo-potentials

    Full text link
    We present pseudo-potential coefficients for the first two rows of the periodic table. The pseudo potential is of a novel analytic form, that gives optimal efficiency in numerical calculations using plane waves as basis set. At most 7 coefficients are necessary to specify its analytic form. It is separable and has optimal decay properties in both real and Fourier space. Because of this property, the application of the nonlocal part of the pseudo-potential to a wave-function can be done in an efficient way on a grid in real space. Real space integration is much faster for large systems than ordinary multiplication in Fourier space since it shows only quadratic scaling with respect to the size of the system. We systematically verify the high accuracy of these pseudo-potentials by extensive atomic and molecular test calculations.Comment: 16 pages, 4 postscript figure

    The Opacity of Spiral Galaxy Disks VI: Extinction, stellar light and color

    Get PDF
    In this paper we explore the relation between dust extinction and stellar light distribution in disks of spiral galaxies. Extinction influences our dynamical and photometric perception of disks, since it can distort our measurement of the contribution of the stellar component. To characterize the total extinction by a foreground disk, Gonzalez et al. (1998) proposed the ``Synthetic Field Method'' (SFM), which uses the calibrated number of distant galaxies seen through the foreground disk as a direct indication of extinction. The method is described in Gonzalez et al. (1998) and Holwerda et al. (2005a). To obtain good statistics, the method was applied to a set of HST/WFPC2 fields Holwerda et al. (2005b) and radial extinction profiles were derived, based on these counts. In the present paper, we explore the relation of opacity with surface brightness or color from 2MASS images, as well as the relation between the scalelengths for extinction and light in the I band. We find that there is indeed a relation between the opacity (A_I) and the surface brightness, particularly at the higher surface brightnesses. No strong relation between near infrared (H-J, H-K) color and opacity is found. The scalelengths of the extinction are uncertain for individual galaxies but seem to indicate that the dust distribution is much more extended than the stellar light. The results from the distant galaxy counts are also compared to the reddening derived from the Cepheids light-curves Freedman et al. (2001). The extinction values are consistent, provided the selection effect against Cepheids with higher values of A_I is taken into account. The implications from these relations for disk photometry, M/L conversion and galaxy dynamical modeling are briefly discussed.Comment: 9 pages, 2 tables, 10 figures, accepted by A&

    K-band spectroscopy of pre-cataclysmic variables

    Get PDF
    Aims. There exists now substantial evidence for abundance anomalies in a number of cataclysmic variables (CVs), indicating that the photosphere of the secondary star incorporates thermonuclear processed material. However, the spectral energy distribution in CVs is usually dominated by the radiation produced by the accretion process, severely hindering an investigation of the stellar components. On the other hand, depending on how the secondary star has acquired such material, the above mentioned abundance anomalies could also be present in pre-CVs, i.e. detached white/red dwarf binaries that will eventually evolve into CVs, but have not yet started mass transfer, and therefore allow for an unobstructed view on the secondary star at infrared wavelengths. Methods. We have taken K-band spectroscopy of a sample of 13 pre-CVs in order to examine them for anomalous chemical abundances. In particular, we study the strength of the 12CO and 13CO absorption bands that have been found diminished and enhanced, respectively, in similar studies of CVs. Results. All our systems show CO abundances that are within the range observed for single stars. The weakest 12CO bands with respect to the spectral type are found in the pre-CV BPM 71214, although on a much smaller scale than observed in CVs. Furthermore there is no evidence for enhanced 13CO. Taking into account that our sample is subject to the present observational bias that favours the discovery of young pre-CVs with secondary stars of late spectral types, we can conclude the following: 1) our study provides observational proof that the CO anomalies discovered in certain CVs are not due to any material acquired during the common envelope phase, and 2) if the CO anomalies in certain CVs are not due to accretion of processed material during nova outburst, then the progenitors of these CVs are of a significantly different type than the currently known sample of pre-CVs
    • 

    corecore