2,522 research outputs found

    Observation of plaquette fluctuations in the spin-1/2 honeycomb lattice

    Get PDF
    Quantum spin liquids are materials that feature quantum entangled spin correlations and avoid magnetic long-range order at T = 0 K. Particularly interesting are two-dimensional honeycomb spin lattices where a plethora of exotic quantum spin liquids have been predicted. Here, we experimentally study an effective S=1/2 Heisenberg honeycomb lattice with competing nearest and next-nearest neighbor interactions. We demonstrate that YbBr3_3 avoids order down to at least T=100 mK and features a dynamic spin-spin correlation function with broad continuum scattering typical of quantum spin liquids near a quantum critical point. The continuum in the spin spectrum is consistent with plaquette type fluctuations predicted by theory. Our study is the experimental demonstration that strong quantum fluctuations can exist on the honeycomb lattice even in the absence of Kitaev-type interactions, and opens a new perspective on quantum spin liquids.Comment: 32 pages, 7 Figure

    Supersymmetric NLO QCD Corrections to Resonant Slepton Production and Signals at the Tevatron and the LHC

    Get PDF
    We compute the total cross section and the transverse momentum distribution for single charged slepton and sneutrino production at hadronic colliders including NLO supersymmetric and non-supersymmetric QCD corrections. The supersymmetric QCD corrections can be substantial. We also resum the gluon transverse momentum distribution and compare our results with two Monte Carlo generators. We compute branching ratios of the supersymmetric decays of the slepton and determine event rates for the like-sign dimuon final state at the Tevatron and at the LHC.Comment: 14 pages, LaTeX, 8 figures, uses REVTex

    High-resolution wide-band Fast Fourier Transform spectrometers

    Full text link
    We describe the performance of our latest generations of sensitive wide-band high-resolution digital Fast Fourier Transform Spectrometer (FFTS). Their design, optimized for a wide range of radio astronomical applications, is presented. Developed for operation with the GREAT far infrared heterodyne spectrometer on-board SOFIA, the eXtended bandwidth FFTS (XFFTS) offers a high instantaneous bandwidth of 2.5 GHz with 88.5 kHz spectral resolution and has been in routine operation during SOFIA's Basic Science since July 2011. We discuss the advanced field programmable gate array (FPGA) signal processing pipeline, with an optimized multi-tap polyphase filter bank algorithm that provides a nearly loss-less time-to-frequency data conversion with significantly reduced frequency scallop and fast sidelobe fall-off. Our digital spectrometers have been proven to be extremely reliable and robust, even under the harsh environmental conditions of an airborne observatory, with Allan-variance stability times of several 1000 seconds. An enhancement of the present 2.5 GHz XFFTS will duplicate the number of spectral channels (64k), offering spectroscopy with even better resolution during Cycle 1 observations.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue

    Non-equilibrium hysteresis and spin relaxation in the mixed-anisotropy dipolar coupled spin-glass LiHo0.5_{0.5}Er0.5_{0.5}F4_{4}

    Get PDF
    We present a study of the model spin-glass LiHo0.5_{0.5}Er0.5_{0.5}F4_4 using simultaneous AC susceptibility, magnetization and magnetocaloric effect measurements along with small angle neutron scattering (SANS) at sub-Kelvin temperatures. All measured bulk quantities reveal hysteretic behavior when the field is applied along the crystallographic c axis. Furthermore avalanche-like relaxation is observed in a static field after ramping from the zero-field-cooled state up to 200−300200 - 300 Oe. SANS measurements are employed to track the microscopic spin reconfiguration throughout both the hysteresis loop and the related relaxation. Comparing the SANS data to inhomogeneous mean-field calculations performed on a box of one million unit cells provides a real-space picture of the spin configuration. We discover that the avalanche is being driven by released Zeeman energy, which heats the sample and creates positive feedback, continuing the avalanche. The combination of SANS and mean-field simulations reveal that the conventional distribution of cluster sizes is replaced by one with a depletion of intermediate cluster sizes for much of the hysteresis loop.Comment: 6 pages, 4 figure

    Thermodynamics of the Spin Luttinger-Liquid in a Model Ladder Material

    Get PDF
    The phase diagram in temperature and magnetic field of the metal-organic, two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the specific heat and the magnetocaloric effect. We demonstrate the presence of an extended spin Luttinger-liquid phase between two field-induced quantum critical points and over a broad range of temperature. Based on an ideal spin-ladder Hamiltonian, comprehensive numerical modelling of the ladder specific heat yields excellent quantitative agreement with the experimental data across the complete phase diagram.Comment: 4 pages, 4 figures, updated refs and minor changes to the text, version accepted for publication in Phys. Rev. Let

    Quantum Statistics of Interacting Dimer Spin Systems

    Get PDF
    The compound TlCuCl3 represents a model system of dimerized quantum spins with strong interdimer interactions. We investigate the triplet dispersion as a function of temperature by inelastic neutron scattering experiments on single crystals. By comparison with a number of theoretical approaches we demonstrate that the description of Troyer, Tsunetsugu, and Wuertz [Phys. Rev. B 50, 13515 (1994)] provides an appropriate quantum statistical model for dimer spin systems at finite temperatures, where many-body correlations become particularly important.Comment: 4 pages, 4 figures, to appear in Physical Review Letter

    Spinon localization in the heat transport of the spin-1/2 ladder compound (C5_5H12_{12}N)2_2CuBr4_4

    Get PDF
    We present experiments on the magnetic field-dependent thermal transport in the spin-1/2 ladder system (C5_5H12_{12}N)2_2CuBr4_4. The thermal conductivity Îș(B)\kappa(B) is only weakly affected by the field-induced transitions between the gapless Luttinger-liquid state realized for Bc1<B<Bc2B_{c1}< B < B_{c2} and the gapped states, suggesting the absence of a direct contribution of the spin excitations to the heat transport. We observe, however, that the thermal conductivity is strongly suppressed by the magnetic field deeply within the Luttinger-liquid state. These surprising observations are discussed in terms of localization of spinons within finite ladder segments and spinon-phonon umklapp scattering of the predominantly phononic heat transport.Comment: 4 pages, 3 figure

    Upscaling the housing renovation market through far-reaching industrialization

    Get PDF
    The European existing building stock contributes to 40% of the total energy use and 36% of the CO2 emissions. To deal with the climate crisis, European climate and energy objectives were defined. By 2050, CO2 emissions should be cut to 80-95% compared to 1990 and all buildings must be energy-neutral. The North-Sea Region alone consists of 22 million outdated dwellings built between 1950 and 1985 that are in high need of renovation. Nowadays, the renovation industry applies mainly manual on-site renovation techniques, resulting in a low renovation pace, relatively high labour costs and a long duration. To tackle the urgent need for rapid renovations, six countries of the North-Sea Region collaborate to upscale the current renovation process in the Interreg project INDU-ZERO "Industrialization of house renovations toward energy-neutral". The project focuses on modular prefabricated renovation packages with fully integrated HVAC technologies to arrive at energy-neutral dwellings. The project researches the possibilities of far-reaching automated and industrialized production processes. A smart factory blueprint will be designed to speed up the renovation pace to a target of 15,000 renovation packages per year per factory while cutting the current price with 50%. This contribution focuses on three main topics: material use, operational energy use and transport. Firstly, the reasoning behind the renovation package design is explained. Next, the packages are adopted on an archetype dwelling to document the thermal performance before and after renovation. Finally, the associated logistics are studied. To summarize each individual research in a blanket result, the environmental impact is determined and compared to the non-renovated dwelling

    Dipolar spin-waves and tunable band gap at the Dirac points in the 2D magnet ErBr3

    Get PDF
    Topological magnon insulators constitute a growing field of research for their potential use as information carriers without heat dissipation. We report an experimental and theoretical study of the magnetic ground-state and excitations in the van der Waals two-dimensional honeycomb magnet ErBr3. We show that the magnetic properties of this compound are entirely governed by the dipolar interactions which generate a continuously degenerate non-collinear ground-state on the honeycomb lattice with spins confined in the plane. We find that the magnon dispersion exhibits Dirac-like cones when the magnetic moments in the ground-state are related by time-reversal and inversion symmetries associated with a Berry phase \pi as in single-layer graphene. A magnon band gap opens when the dipoles are rotated away from this state, entailing a finite Berry curvature in the vicinity of the K and K' Dirac points. Our results illustrate that the spin-wave dispersion of dipoles on the honeycomb lattice can be reversibly controlled from a magnetic phase with Dirac cones to a topological antiferromagnetic insulator with non-trivial valley Chern number
    • 

    corecore