759 research outputs found

    Testing mood-activated psychological markers for suicidal ideation

    Get PDF
    To what extent are death- and life-oriented psychological processes among suicidal individuals activated by mood? According to Teasdale’s (1988) Differential Activation Hypothesis, we would expect that negative mood-activated psychological processes are maladaptive among suicide ideators (vs. non-ideators) and predictive of subsequent suicidal ideation. This, however, has never been prospectively studied. To address this knowledge gap, we conducted a prospective study assessing psychological risk factors via the Death/Life Implicit Association Test (IAT) and the Suicide Stroop task before and after a temporary negative mood induction. Suicidal ideation was assessed one and six months later. Results based on Death/Life IAT performance largely supported hypotheses, such that suicide ideators demonstrated significantly weaker implicit identification with life after (vs. before) the negative mood induction. Non-ideators demonstrated no significant change, maintaining strong identification with life irrespective of mood. Of note, this baseline interaction may have been accounted for by depressive symptoms. Identification with death (vs. life) predicted greater likelihood of suicidal ideation one month later, controlling for depressive symptoms and baseline suicidal ideation. Only negative mood-activated identification with death predicted suicidal ideation six months later. Suicide Stroop scores did not change as a function of mood or predict subsequent suicidal ideation. Death/Life IAT findings support the Differential Activation Hypothesis and suggest that suicide ideators’ identification with life is more variable and easily weakened by negative mood relative to non-ideators. We encourage future work to consider the potential role of transient mood and the importance of measuring psychological processes that pertain to both death and life

    Potential of the Julia programming language for high energy physics computing

    Full text link
    Research in high energy physics (HEP) requires huge amounts of computing and storage, putting strong constraints on the code speed and resource usage. To meet these requirements, a compiled high-performance language is typically used; while for physicists, who focus on the application when developing the code, better research productivity pleads for a high-level programming language. A popular approach consists of combining Python, used for the high-level interface, and C++, used for the computing intensive part of the code. A more convenient and efficient approach would be to use a language that provides both high-level programming and high-performance. The Julia programming language, developed at MIT especially to allow the use of a single language in research activities, has followed this path. In this paper the applicability of using the Julia language for HEP research is explored, covering the different aspects that are important for HEP code development: runtime performance, handling of large projects, interface with legacy code, distributed computing, training, and ease of programming. The study shows that the HEP community would benefit from a large scale adoption of this programming language. The HEP-specific foundation libraries that would need to be consolidated are identifiedComment: 32 pages, 5 figures, 4 table

    Observation of the Decay Λ0b→Λ+cτ−¯ν

    Get PDF
    The first observation of the semileptonic b-baryon decay Λb0→Λc+τ-ν¯τ, with a significance of 6.1σ, is reported using a data sample corresponding to 3 fb-1 of integrated luminosity, collected by the LHCb experiment at center-of-mass energies of 7 and 8 TeV at the LHC. The τ- lepton is reconstructed in the hadronic decay to three charged pions. The ratio K=B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+π-π+π-) is measured to be 2.46±0.27±0.40, where the first uncertainty is statistical and the second systematic. The branching fraction B(Λb0→Λc+τ-ν¯τ)=(1.50±0.16±0.25±0.23)% is obtained, where the third uncertainty is from the external branching fraction of the normalization channel Λb0→Λc+π-π+π-. The ratio of semileptonic branching fractions R(Λc+)B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+μ-ν¯μ) is derived to be 0.242±0.026±0.040±0.059, where the external branching fraction uncertainty from the channel Λb0→Λc+μ-ν¯μ contributes to the last term. This result is in agreement with the standard model prediction

    A study of CP violation in the decays B±→[K+K-π+π-]Dh± (h= K, π) and B±→[π+π-π+π-]Dh±

    Get PDF
    The first study of CP violation in the decay mode B±→[K+K-π+π-]Dh± , with h= K, π , is presented, exploiting a data sample of proton–proton collisions collected by the LHCb experiment that corresponds to an integrated luminosity of 9 \,fb - 1 . The analysis is performed in bins of phase space, which are optimised for sensitivity to local CP asymmetries. CP -violating observables that are sensitive to the angle γ of the Unitarity Triangle are determined. The analysis requires external information on charm-decay parameters, which are currently taken from an amplitude analysis of LHCb data, but can be updated in the future when direct measurements become available. Measurements are also performed of phase-space integrated observables for B±→[K+K-π+π-]Dh± and B±→[π+π-π+π-]Dh± decays

    Measurement of the photon polarization in Λb→Λγ\Lambda_b \to \Lambda \gamma decays

    Get PDF
    The photon polarization in b→sγb \to s \gamma transitions is measured for the first time in radiative b-baryon decays exploiting the unique spin structure of Λb→Λγ\Lambda_b \to \Lambda \gamma decays. A data sample corresponding to an integrated luminosity of 6  fb−16\;fb^{-1} collected by the LHCb experiment in pppp collisions at a center-of-mass energy of 13  TeV13\;TeV is used. The photon polarization is measured to be αγ=0.82 − 0.26 − 0.13 + 0.17 + 0.04\alpha_{\gamma}= 0.82^{\,+\,0.17\,+\,0.04}_{\,-\,0.26\,-\,0.13}, where the first uncertainty is statistical and the second systematic. This result is in agreement with the Standard Model prediction and previous measurements in b-meson decays. Charge-parity breaking effects are studied for the first time in this observable and found to be consistent with CPCP symmetry.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-030.html (LHCb public pages

    Antigen presentation deficiency, mesenchymal differentiation, and resistance to immunotherapy in the murine syngeneic CT2A tumor model

    Get PDF
    BackgroundThe GL261 and CT2A syngeneic tumor lines are frequently used as immunocompetent orthotopic mouse models of human glioblastoma (huGBM) but demonstrate distinct differences in their responses to immunotherapy.MethodsTo decipher the cell-intrinsic mechanisms that drive immunotherapy resistance in CT2A-luc and to define the aspects of human cancer biology that these lines can best model, we systematically compared their characteristics using whole exome and transcriptome sequencing, and protein analysis through immunohistochemistry, Western blot, flow cytometry, immunopeptidomics, and phosphopeptidomics.ResultsThe transcriptional profiles of GL261-luc2 and CT2A-luc tumors resembled those of some huGBMs, despite neither line sharing the essential genetic or histologic features of huGBM. Both models exhibited striking hypermutation, with clonal hotspot mutations in RAS genes (Kras p.G12C in GL261-luc2 and Nras p.Q61L in CT2A-luc). CT2A-luc distinctly displayed mesenchymal differentiation, upregulated angiogenesis, and multiple defects in antigen presentation machinery (e.g. Tap1 p.Y488C and Psmb8 p.A275P mutations) and interferon response pathways (e.g. copy number losses of loci including IFN genes and reduced phosphorylation of JAK/STAT pathway members). The defect in MHC class I expression could be overcome in CT2A-luc by interferon-γ treatment, which may underlie the modest efficacy of some immunotherapy combinations. Additionally, CT2A-luc demonstrated substantial baseline secretion of the CCL-2, CCL-5, and CCL-22 chemokines, which play important roles as myeloid chemoattractants.ConclusionAlthough the clinical contexts that can be modeled by GL261 and CT2A for huGBM are limited, CT2A may be an informative model of immunotherapy resistance due to its deficits in antigen presentation machinery and interferon response pathways

    Measurement of antiproton production from antihyperon decays in pHe collisions at √sNN=110GeV

    Get PDF
    The interpretation of cosmic antiproton flux measurements from space-borne experiments is currently limited by the knowledge of the antiproton production cross-section in collisions between primary cosmic rays and the interstellar medium. Using collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest in the proximity of the interaction region of the LHCb experiment, the ratio of antiprotons originating from antihyperon decays to prompt production is measured for antiproton momenta between 12 and 110GeV\!/c . The dominant antihyperon contribution, namely Λ¯ → p¯ π+ decays from promptly produced Λ¯ particles, is also exclusively measured. The results complement the measurement of prompt antiproton production obtained from the same data sample. At the energy scale of this measurement, the antihyperon contributions to antiproton production are observed to be significantly larger than predictions of commonly used hadronic production models
    • …
    corecore