1,553 research outputs found

    A List of Galaxies for Gravitational Wave Searches

    Full text link
    We present a list of galaxies within 100 Mpc, which we call the Gravitational Wave Galaxy Catalogue (GWGC), that is currently being used in follow-up searches of electromagnetic counterparts from gravitational wave searches. Due to the time constraints of rapid follow-up, a locally available catalogue of reduced, homogenized data is required. To achieve this we used four existing catalogues: an updated version of the Tully Nearby Galaxy Catalog, the Catalog of Neighboring Galaxies, the V8k catalogue and HyperLEDA. The GWGC contains information on sky position, distance, blue magnitude, major and minor diameters, position angle, and galaxy type for 53,255 galaxies. Errors on these quantities are either taken directly from the literature or estimated based on our understanding of the uncertainties associated with the measurement method. By using the PGC numbering system developed for HyperLEDA, the catalogue has a reduced level of degeneracies compared to catalogues with a similar purpose and is easily updated. We also include 150 Milky Way globular clusters. Finally, we compare the GWGC to previously used catalogues, and find the GWGC to be more complete within 100 Mpc due to our use of more up-to-date input catalogues and the fact that we have not made a blue luminosity cut.Comment: Accepted for publication in Classical and Quantum Gravity, 13 pages, 7 figure

    Pressure Tuning of the Charge Density Wave in the Halogen-Bridged Transition-Metal (MX) Solid Pt2Br6(NH3)4Pt_2Br_6(NH_3)_4

    Full text link
    We report the pressure dependence up to 95 kbar of Raman active stretching modes in the quasi-one-dimensional MX chain solid Pt2Br6(NH3)4Pt_2Br_6(NH_3)_4. The data indicate that a predicted pressure-induced insulator-to-metal transition does not occur, but are consistent with the solid undergoing either a three-dimensional structural distortion, or a transition from a charge-density wave to another broken-symmetry ground state. We show that such a transition cacan be well-modeled within a Peierls-Hubbard Hamiltonian. 1993 PACS: 71.30.+h, 71.45.Lr, 75.30.Fv, 78.30.-j, 81.40.VwComment: 4 pages, ReVTeX 3.0, figures available from the authors on request (Gary Kanner, [email protected]), to be published in Phys Rev B Rapid Commun, REVISION: minor typos corrected, LA-UR-94-246

    Phase Diagram for Charge Density Waves in a Magnetic Field

    Get PDF
    The influence of an external magnetic field on a quasi one-dimensional system with a charge density wave (CDW) instability is treated within the random phase approximation which includes both CDW and spin density wave correlations. We show that the CDW is sensitive to both orbital and Pauli effects of the field. In the case of perfect nesting, the critical temperature decreases monotonously with the field, and the wave vector of the instability starts to shift above some critical value of magnetic field. Depending on the ratio between the spin and charge coupling constants and on the direction of the applied magnetic field, the wave vector shift is either parallel (CDWxCDW_x order) or perpendicular (CDWyCDW_y order) to the most conducting direction. The CDWxCDW_x order is a field dependent linear combination of the charge and spin density waves and is sensible only to the Pauli effect. The wave vector shift in CDWyCDW_y depends on the interchain coupling, but the critical temperature does not. This order is affected by the confinement of the electronic orbits. By increasing the relative strength of the orbital effect with respect to the Pauli effect, one can destroy the CDWyCDW_y, establishing either a CDWxCDW_x, or a CDW0CDW_0 (corresponding to perfect nesting wave vector). We also show that by increasing the imperfect nesting parameter, one passes from the regime where the critical temperature decreases with the field to the regime where it is initially enhanced by the orbital effect and eventually suppressed by the Pauli effect. For a bad nesting, the quantized phases of the field-induced CDW appear.Comment: 30 pages (LaTeX) + 15 figure

    Prospects for joint radio telescope and gravitational wave searches for astrophysical transients

    Full text link
    The radio skies remain mostly unobserved when it comes to transient phenomena. The direct detection of gravitational waves will mark a major milestone of modern astronomy, as an entirely new window will open on the universe. Two apparently independent phenomena can be brought together in a coincident effort that has the potential to boost both searches. In this paper we will outline the scientific case that stands behind these future joint observations and will describe the methods that might be used to conduct the searches and analyze the data. The targeted sources are binary systems of compact objects, known to be strong candidate sources for gravitational waves. Detection of transients coincident in these two channels would be a significant smoking gun for first direct detection of gravitational waves, and would open up a new field for characterization of astrophysical transients involving massive compact objects.Comment: 12 pages, Amaldi 8 Conference (New York, 2009) proceedings pape

    Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational-wave data

    Get PDF
    We discuss the science motivations and prospects for a joint analysis of gravitational-wave (GW) and low-energy neutrino data to search for prompt signals from nearby supernovae (SNe). Both gravitational-wave and low-energy neutrinos are expected to be produced in the innermost region of a core-collapse supernova, and a search for coincident signals would probe the processes which power a supernova explosion. It is estimated that the current generation of neutrino and gravitational-wave detectors would be sensitive to Galactic core-collapse supernovae, and would also be able to detect electromagnetically dark SNe. A joint GW-neutrino search would enable improvements to searches by way of lower detection thresholds, larger distance range, better live-time coverage by a network of GW and neutrino detectors, and increased significance of candidate detections. A close collaboration between the GW and neutrino communities for such a search will thus go far toward realizing a much sought-after astrophysics goal of detecting the next nearby supernova.Comment: 10 pages, 3 figures. To appear in Class. Quantum Gra

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    First joint search for gravitational-wave bursts in LIGO and GEO600 data

    Get PDF
    We present the results of the first joint search for gravitational-wave bursts by the LIGO and GEO600 detectors. We search for bursts with characteristic central frequencies in the band 768 to 2048 Hz in the data acquired between the 22nd of February and the 23rd of March, 2005 (fourth LSC Science Run - S4). We discuss the inclusion of the GEO600 data in the Waveburst-CorrPower pipeline that first searches for coincident excess power events without taking into account differences in the antenna responses or strain sensitivities of the various detectors. We compare the performance of this pipeline to that of the coherent Waveburst pipeline based on the maximum likelihood statistic. This likelihood statistic is derived from a coherent sum of the detector data streams that takes into account the antenna patterns and sensitivities of the different detectors in the network. We find that the coherentWaveburst pipeline is sensitive to signals of amplitude 30 - 50% smaller than the Waveburst-CorrPower pipeline. We perform a search for gravitational-wave bursts using both pipelines and find no detection candidates in the S4 data set when all four instruments were operating stably.Comment: 30 pages, 8 figure

    Search for Gravitational Wave Bursts from Soft Gamma Repeaters

    Get PDF
    We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first search sensitive to neutron star f-modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190 lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first year of LIGO's fifth science run. GW strain upper limits and model-dependent GW emission energy upper limits are estimated for individual bursts using a variety of simulated waveforms. The unprecedented sensitivity of the detectors allows us to set the most stringent limits on transient GW amplitudes published to date. We find upper limit estimates on the model-dependent isotropic GW emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52 erg depending on waveform type, detector antenna factors and noise characteristics at the time of the burst. These upper limits are within the theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target
    • …
    corecore