32 research outputs found

    Network‐scale effects of invasive species on spatially‐structured amphibian populations

    Get PDF
    Understanding the factors affecting the dynamics of spatially‐structured populations (SSP) is a central topic of conservation and landscape ecology. Invasive alien species are increasingly important drivers of the dynamics of native species. However, the impacts of invasives are often assessed at the patch scale, while their effects on SSP dynamics are rarely considered. We used long‐term abundance data to test whether the impact of invasive crayfish on subpopulations can also affect the whole SSP dynamics, through their influence on source populations. From 2010 to 2018, we surveyed a network of 58 ponds and recorded the abundance of Italian agile frog clutches, the occurrence of an invasive crayfish, and environmental features. Using Bayesian hierarchical models, we assessed relationhips between frog abundance in ponds and a) environmental features; b) connectivity within the SSP; c) occurrence of invasive species at both the patch‐ and the SSP‐levels. If spatial relationships between ponds were overlooked, we did not detect effects of crayfish presence on frog abundance or trends. When we jointly considered habitat, subpopulation and SSP features, processes acting at all these levels affected frog abundance. At the subpopulation scale, frog abundance in a year was related to habitat features, but was unrelated to crayfish occurrence at that site during the previous year. However, when we considered the SSP level, we found a strong negative relationship between frog abundance in a given site and crayfish frequency in surrounding wetlands during the previous year. Hence, SSP‐level analyses can identify effects that would remain unnoticed when focussing on single patches. Invasive species can affect population dynamics even in not invaded patches, through the degradation of subpopulation networks. Patch‐scale assessments of the impact of invasive species can thus be insufficient: predicting the long‐term interplay between invasive and native populations requires landscape‐level approaches accounting for the complexity of spatial interactions

    Biological traits of European pond macroinvertebrates

    Get PDF
    Whilst biological traits of river macroinvertebrates show unimodal responses to geographic changes in habitat conditions in Europe, we still do not know whether spatial turnover of species result in distinct combinations of biological traits for pond macroinvertebrates. Here, we used data on the occurrence of 204 macroinvertebrate taxa in 120 ponds from four biogeographic regions of Europe, to compare their biological traits. The Mediterranean, Atlantic, Alpine, and Continental regions have specific climate, vegetation and geology. Only two taxa were exclusively found in the Alpine and Continental regions, while 28 and 34 taxa were exclusively recorded in the Atlantic and Mediterranean regions, respectively. Invertebrates in the Mediterranean region allocated much energy to reproduction and resistance forms. Most Mediterranean invertebrate species had narrow thermal ranges. In Continental areas, invertebrates allocated lesser energy to reproduction and dispersal, and organisms were short lived with high diversity of feeding groups. These characteristics suggest higher resilience. The main difference between ponds in the Alpine and Atlantic regions was their elevation. Alpine conditions necessitate specific adaptations related to rapid temperature fluctuations, and low nutrient concentrations. Even if our samples did not cover the full range of pond conditions across Europe, our analyses suggest that changes in community composition have important impacts on pond ecosystem functions. Consistent information on a larger set of ponds across Europe would be much needed, but their low accessibility (unpublished data and/or not disclosed by authors) remains problematic. There is still, therefore, a pressing need for the incorporation of high quality data sets into a standardized database so that they can be further analyzed in an integrated European-wide manner

    The future for Mediterranean wetlands: 50 key issues and 50 important conservation research questions

    Get PDF
    Wetlands are critically important for biodiversity and human wellbeing, but face a range of challenges. This is especially true in the Mediterranean region, where wetlands support endemic and threatened species and remain integral to human societies, but have been severely degraded in recent decades. Here, in order to raise awareness of future challenges and opportunities for Mediterranean wetlands, and to inform proactive research and management, we identified (a) 50 key issues that might affect Mediterranean wetlands between 2020 and 2050, and (b) 50 important research questions that, if answered, would have the greatest impact on the conservation of Mediterranean wetlands between 2020 and 2050. We gathered ideas through an online survey and review of recent literature. A diverse assessment panel prioritised ideas through an iterative, anonymised, Delphi-like process of scoring, voting and discussion. The prioritised issues included some that are already well known but likely to have a large impact on Mediterranean wetlands in the next 30 years (e.g. the accumulation of dams and reservoirs, plastic pollution and weak governance), and some that are currently overlooked in the context of Mediterranean wetlands (e.g. increasing desalination capacity and development of antimicrobial resistance). Questions largely focused on how best to carry out conservation interventions, or understanding the impacts of threats to inform conservation decision-making. This analysis will support research, policy and practice related to environmental conservation and sustainable development in the Mediterranean, and provides a model for similar analyses elsewhere in the world

    Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints

    Full text link

    Conservation and monitoring of pond biodiversity : introduction

    No full text
    A meeting co-organized by University of Applied Sciences of Western Switzerland, University of Geneva, University of Toulouse 3, The Pond Conservation Trust, and held at the Ecole d'IngĂ©nieurs HES, Lullier-Geneva, Switzerland, 28–30 October 200

    Unintentional dispersal of aquatic invertebrates via footwear and motor vehicles in a Mediterranean wetland area

    No full text
    1. Several human activities, such as actions for nature conservation, research and recreational activities, are closely associated with inland aquatic habitats that are usually considered as isolated island habitats. In this study, the possibility of unintentional dispersal of aquatic invertebrates among water bodies via footwear and motor vehicles was investigated. 2. Mud samples collected from boots and from the tyres and wheel cases of cars used for field work by biologists (Camargue, Southern France) were hatched under laboratory conditions and also checked for the presence of unhatched propagules. A large number of organisms hatched and invertebrate propagules from a wide range of taxa were encountered (including Artemia, freshwater large branchiopods, Cladocera, Ostracoda, Rotifera, Turbellaria, Nematoda, etc.). The results also demonstrated that different research groups tend to transport the aquatic invertebrates typical for their respective study systems. 3. Human dispersal of aquatic invertebrates has been studied mainly on large continental scales, such as in the case of transoceanic transport via ballast water in ships. This study provides evidence that dispersal via footwear and motor vehicles may result in frequent dispersal of aquatic invertebrates on a local scale, and we presume also occasionally over longer distances. Given the rapid spread of invasive zooplankton species (e. g. Artemia franciscana encountered in this study), we promote caution and recommend cleaning before transport of any equipment which comes in contact with water or aquatic sediment. Copyright (C) 2010 John Wiley & Sons, Ltd

    Unraveling the impact of anthropogenic pressure on plant communities in Mediterranean temporary ponds

    No full text
    Identifying the respective role of environmental, landscape and management factors in explaining the patterns in community composition is an important goal in ecology. Using a set of 32 temporary ponds in northern Morocco we studied the respective importance of local (within the pond) and regional (density of ponds in landscape) factors and the impacts of different land uses on the plant species assemblages, separating pond and terrestrial species. The main hypotheses tested were that (1) species assemblages respond to both local and regional environmental factors, (2)anthropogenic pressure has a negative influence on the number of pond species, and that (3) human activities differ in their impact on pond biodiversity. The results showed that (1) local factors explain most of the variation in plant community composition, and (2) land use impacts the communities through changing local environmental conditions, leading to a loss of typical pond species. Aside from recreation, all other activities (grazing, drainage, agriculture and partial urbanisation) significantly reduced the number of pond species. The conservation strategy for rare pond species should focus on maintaining networks of oligotrophic ponds, while allowing only low-impact activities.status: publishe
    corecore