125 research outputs found

    Bisphosphonate Treatment Modifies Canine Bone Mineral and Matrix Properties and their Heterogeneity

    Get PDF
    Bone loss and alterations in bone quality are major causes leading to bone fragility in postmenopausal women. Although bisphosphonates are well known to reduce bone turnover and prevent bone loss in postmenopausal osteoporosis, their effects on other bone properties are not fully characterized. Changes in bone mineral and matrix properties may contribute to the anti-fracture efficacy observed with bisphosphonate treatments. The aim of this work was to analyze the effect of a 1-year treatment with either alendronate or risedronate, at low and high doses, on spatially resolved bone material and compositional properties that could contribute to the fracture efficacy of these agents. Distal tibias from 30 normal beagles that had been treated daily for 1 year with oral doses of vehicle (Veh), alendronate (Aln) at 0.2 or 1 mg/kg, and risedronate (Ris) at 0.1 or 0.5 mg/kg were analyzed by Fourier Transform Infrared imaging (FTIRI) to assess the changes in both mineral and matrix properties in discrete bone areas. The widths at half maximum of the pixel histograms for each FTIRI parameter were used to assess the heterogeneity of the bone tissue. Aln and Ris increased the mineral content and the collagen maturity mainly in cancellous bone and at the endocortical surface. Significant differences were observed in the mineral content and in the hydroxyapatite crystallinity distribution in bone tissue, which can contribute to reduced ductility and micro-crack accumulation. No significant differences were observed between low and high dose nor between Aln and Ris treatments. These results show that pharmacologic suppression of bone turnover increases the mineral and matrix bone tissue maturity in normal cancellous and endocortical bone areas where bone turnover is higher. These positive effects for decreased fracture risk are also associated with a loss of bone heterogeneity that could be one factor contributing to increased bone tissue brittleness and micro-crack accumulation

    A systematic review and meta-analysis of neurological soft signs in relatives of people with schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurological soft signs are subtle but observable impairments in motor and sensory functions that are not localized to a specific area of the brain. Neurological soft signs are common in schizophrenia. It has been established that soft signs meet two of five criteria for an endophenotype, namely: association with the illness, and state independence. This review investigated whether soft signs met a further criterion for an endophenotype, namely familial association. It was hypothesized that if familial association were present then neurological soft signs would be: (a) more common in first-degree relatives of people with schizophrenia than in controls; and (b) more common in people with schizophrenia than in their first-degree relatives.</p> <p>Method</p> <p>A systematic search identified potentially eligible studies in the EMBASE (1980-2011), OVID - MEDLINE (1950-2011) and PsycINFO (1806-2011) databases. Studies were included if they carried out a three-way comparison of levels of soft signs between people with schizophrenia, their first-degree relatives, and normal controls. Data were extracted independently by two reviewers and cross-checked by double entry.</p> <p>Results</p> <p>After screening 8678 abstracts, seven studies with 1553 participants were identified. Neurological soft signs were significantly more common in first-degree relatives of people with schizophrenia than in controls (pooled standardised mean difference (SMD) 1.24, 95% confidence interval (c.i) 0.59-1.89). Neurological soft signs were also significantly more common in people with schizophrenia than in their first-degree relatives (SMD 0.92, 95% c.i 0.64-1.20). Sensitivity analyses examining the effects of age and group blinding did not significantly alter the main findings.</p> <p>Conclusions</p> <p>Both hypotheses were confirmed, suggesting that the distribution of neurological soft signs in people with schizophrenia and their first-degree relatives is consistent with the endophenotype criterion of familial association.</p

    Morphological features in a Xhosa schizophrenia population

    Get PDF
    BACKGROUND: Demonstrating an association between physical malformation and schizophrenia could be considered supportive of a neurodevelopmental origin of schizophrenia and may offer insights into a critical period for the development of this illness. The aim of our study was to investigate whether differences in the presence of minor physical anomalies could be demonstrated between schizophrenia sufferers and normal controls in a Xhosa population with a view to identifying a means of subtyping schizophrenia for use in future genetic studies. METHODS: Sixty-three subjects with schizophrenia (21 sibling pairs, 1 sibship of four and a group of probands with an affected non-participating sibling (n = 17)), 81 normal controls (37 singletons and 22 sibling pairs) of Xhosa ethnicity were recruited. Each participant was then examined for minor physical anomalies using the Modified Waldrop scale. The relationship between each of the morphological features and the presence of an affected sib was examined using the Chi-squared test, followed by an intra-pair concordance analysis in the sibling pairs. RESULTS: Gap between first and second toes was significantly more common in the affected sib pair group when compared to the non-affected sib pair group (p = 0.019) and non-affected singleton control group (p = 0.013). Concordance analysis also revealed increased concordance for this item in the affected sib pair group. CONCLUSION: These findings offer an intriguing possibility that in the Xhosa population, affected sib pair status may be linked to a neurodevelopmental insult during a specific period of the fetal developmental

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Repeated, Selection-Driven Genome Reduction of Accessory Genes in Experimental Populations

    Get PDF
    Genome reduction has been observed in many bacterial lineages that have adapted to specialized environments. The extreme genome degradation seen for obligate pathogens and symbionts appears to be dominated by genetic drift. In contrast, for free-living organisms with reduced genomes, the dominant force is proposed to be direct selection for smaller, streamlined genomes. Most variation in gene content for these free-living species is of “accessory” genes, which are commonly gained as large chromosomal islands that are adaptive for specialized traits such as pathogenicity. It is generally unclear, however, whether the process of accessory gene loss is largely driven by drift or selection. Here we demonstrate that selection for gene loss, and not a shortened genome, per se, drove massive, rapid reduction of accessory genes. In just 1,500 generations of experimental evolution, 80% of populations of Methylobacterium extorquens AM1 experienced nearly parallel deletions removing up to 10% of the genome from a megaplasmid present in this strain. The absence of these deletion events in a mutation accumulation experiment suggested that selection, rather than drift, has dominated the process. Reconstructing these deletions confirmed that they were beneficial in their selective regimes, but led to decreased performance in alternative environments. These results indicate that selection can be crucial in eliminating unnecessary genes during the early stages of adaptation to a specialized environment

    Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia

    Get PDF
    Pharmacological, genetic and expression studies implicate N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia (SCZ). Similarly, several lines of evidence suggest that autism spectrum disorders (ASD) could be due to an imbalance between excitatory and inhibitory neurotransmission. As part of a project aimed at exploring rare and/or de novo mutations in neurodevelopmental disorders, we have sequenced the seven genes encoding for NMDA receptor subunits (NMDARs) in a large cohort of individuals affected with SCZ or ASD (n=429 and 428, respectively), parents of these subjects and controls (n=568). Here, we identified two de novo mutations in patients with sporadic SCZ in GRIN2A and one de novo mutation in GRIN2B in a patient with ASD. Truncating mutations in GRIN2C, GRIN3A and GRIN3B were identified in both subjects and controls, but no truncating mutations were found in the GRIN1, GRIN2A, GRIN2B and GRIN2D genes, both in patients and controls, suggesting that these subunits are critical for neurodevelopment. The present results support the hypothesis that rare de novo mutations in GRIN2A or GRIN2B can be associated with cases of sporadic SCZ or ASD, just as it has recently been described for the related neurodevelopmental disease intellectual disability. The influence of genetic variants appears different, depending on NMDAR subunits. Functional compensation could occur to counteract the loss of one allele in GRIN2C and GRIN3 family genes, whereas GRIN1, GRIN2A, GRIN2B and GRIN2D appear instrumental to normal brain development and function

    Mineral Composition is Altered by Osteoblast Expression of an Engineered Gs-Coupled Receptor

    Get PDF
    Activation of the Gs G protein–coupled receptor Rs1 in osteoblasts increases bone mineral density by 5- to 15-fold in mice and recapitulates histologic aspects of fibrous dysplasia of the bone. However, the effects of constitutive Gs signaling on bone tissue quality are not known. The goal of this study was to determine bone tissue quality in mice resulting from osteoblast-specific constitutive Gs activation, by the complementary techniques of FTIR spectroscopy and synchrotron radiation micro-computed tomography (SRμCT). Col1(2.3)-tTA/TetO-Rs1 double transgenic (DT) mice, which showed osteoblast-specific constitutive Gs signaling activity by the Rs1 receptor, were created. Femora and calvariae of DT and wild-type (WT) mice (6 and 15 weeks old) were analyzed by FTIR spectroscopy. WT and DT femora (3 and 9 weeks old) were imaged by SRμCT. Mineral-to-matrix ratio was 25% lower (P = 0.010), carbonate-to-phosphate ratio was 20% higher (P = 0.025), crystallinity was 4% lower (P = 0.004), and cross-link ratio was 11% lower (P = 0.025) in 6-week DT bone. Differences persisted in 15-week animals. Quantitative SRμCT analysis revealed substantial differences in mean values and heterogeneity of tissue mineral density (TMD). TMD values were 1,156 ± 100 and 711 ± 251 mg/cm3 (mean ± SD) in WT and DT femoral diaphyses, respectively, at 3 weeks. Similar differences were found in 9-week animals. These results demonstrate that continuous Gs activation in murine osteoblasts leads to deposition of immature bone tissue with reduced mineralization. Our findings suggest that bone tissue quality may be an important contributor to increased fracture risk in fibrous dysplasia patients

    A Population Genetic Approach to Mapping Neurological Disorder Genes Using Deep Resequencing

    Get PDF
    Deep resequencing of functional regions in human genomes is key to identifying potentially causal rare variants for complex disorders. Here, we present the results from a large-sample resequencing (n = 285 patients) study of candidate genes coupled with population genetics and statistical methods to identify rare variants associated with Autism Spectrum Disorder and Schizophrenia. Three genes, MAP1A, GRIN2B, and CACNA1F, were consistently identified by different methods as having significant excess of rare missense mutations in either one or both disease cohorts. In a broader context, we also found that the overall site frequency spectrum of variation in these cases is best explained by population models of both selection and complex demography rather than neutral models or models accounting for complex demography alone. Mutations in the three disease-associated genes explained much of the difference in the overall site frequency spectrum among the cases versus controls. This study demonstrates that genes associated with complex disorders can be mapped using resequencing and analytical methods with sample sizes far smaller than those required by genome-wide association studies. Additionally, our findings support the hypothesis that rare mutations account for a proportion of the phenotypic variance of these complex disorders
    corecore