300 research outputs found

    Lactose Transport System of Streptococcus thermophilus. Functional Reconstitution of the Protein and Characterization of the Kinetic Mechanism of Transport

    Get PDF
    The kinetic mechanism of the lactose transport system of Streptococcus thermophilus was studied in membrane vesicles fused with cytochrome c oxidase containing liposomes and in proteoliposomes in which cytochrome c oxidase was coreconstituted with the lactose transport protein. Selective manipulation of the components of the proton (and sodium) motive force indicated that both a membrane potential and a PH gradient could drive transport. The galactoside/proton stoichiometry was close to unity. Experiments which discriminate between the effects of internal pH and DELTApH as driving force on galactoside/proton symport showed that the carrier is highly activated at alkaline internal pH values, which biases the transport system kinetically toward the pH component of the proton motive force. Galactoside efflux increased with increasing pH with a pK(a) of about 8, whereas galactoside exchange (and counterflow) exhibited a pH optimum around 7 with pK(a) values of 6 and 8, respectively. Imposition of DELTApH (interior alkaline) retarded the rate of efflux at any pH value tested, whereas the rate of exchange was stimulated by an imposed DELTApH at pH 5.8, not affected at pH 7.0, and inhibited at pH 8.0 and 9.0. The results have been evaluated in terms of random and ordered association/dissociation of galactoside and proton on the inner surface of the membrane. Imposition of DELTAPSI (interior negative) decreased the rate of efflux but had no effect on the rate of exchange, indicating that the unloaded transport protein carries a net negative charge and that during exchange and counterflow the carrier recycles in the protonated form.</p

    Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    Get PDF
    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 343^4 to 16416^4) and couplings (from β9\beta \approx 9 to β60\beta \approx 60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.Comment: 36 pages, 15 figures, REVTEX documen

    Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets

    Full text link
    An identifying code of a (di)graph GG is a dominating subset CC of the vertices of GG such that all distinct vertices of GG have distinct (in)neighbourhoods within CC. In this paper, we classify all finite digraphs which only admit their whole vertex set in any identifying code. We also classify all such infinite oriented graphs. Furthermore, by relating this concept to a well known theorem of A. Bondy on set systems we classify the extremal cases for this theorem

    Observing the high redshift universe using the VIMOS-IFU

    Full text link
    We describe the advantages of using Integral Field Spectroscopy to observe deep fields of galaxy. The VIMOS Integral Field Unit is particularly suitable for this kind of studies thanks to its large field-of-view (~ 1 arcmin^2). After a short description of the VIMOS-IFU data reduction, we detail the main scientific issues which can be addressed using observations of the Hubble Deep Field South with a combination of Integral Field Spectroscopy and broad band optical and Near-Infrared imaging.Comment: 4 pages, accepted for publishing in AN (ref. proc. of Euro3D Science workshop, IoA Cambridge, May 2003

    Cosmic Shear Statistics and Cosmology

    Get PDF
    We report a measurement of cosmic shear correlations using an effective area of 6.5 sq. deg. of the VIRMOS deep imaging survey in progress at the Canada-France-Hawaii Telescope. We measured various shear correlation functions, the aperture mass statistic and the top-hat smoothed variance of the shear with a detection significance exceeding 12 sigma for each of them. We present results on angular scales from 3 arc-seconds to half a degree. The consistency of different statistical measures is demonstrated and confirms the lensing origin of the signal through tests that rely on the scalar nature of the gravitational potential. For Cold Dark Matter models we find σ8Ω00.6=0.430.05+0.04\sigma_8 \Omega_0^{0.6}=0.43^{+0.04}_{-0.05} at the 95% confidence level. The measurement over almost three decades of scale allows to discuss the effect of the shape of the power spectrum on the cosmological parameter estimation. The degeneracy on sigma_8-Omega_0 can be broken if priors on the shape of the linear power spectrum (that can be parameterized by Gamma) are assumed. For instance, with Gamma=0.21 and at the 95% confidence level, we obtain 0.60.65 and Omega_0<0.4 for flat (Lambda-CDM) models. From the tangential/radial modes decomposition we can set an upper limit on the intrinsic shape alignment, which was recently suggested as a possible contribution to the lensing signal. Within the error bars, there is no detection of intrinsic shape alignment for scales larger than 1'.Comment: 13 pages, submitted to A&

    The VLA-VIRMOS Deep Field I. Radio observations probing the microJy source population

    Get PDF
    We have conducted a deep survey (r.m.s noise 17 microJy) with the Very Large Array (VLA) at 1.4 GHz, with a resolution of 6 arcsec, of a 1 square degree region included in the VIRMOS VLT Deep Survey. In the same field we already have multiband photometry down to I(AB)=25, and spectroscopic observations will be obtained during the VIRMOS VLT survey. The homogeneous sensitivity over the whole field has allowed to derive a complete sample of 1054 radio sources (5 sigma limit). We give a detailed description of the data reduction and of the analysis of the radio observations, with particular care to the effects of clean bias and bandwidth smearing, and of the methods used to obtain the catalogue of radio sources. To estimate the effect of the resolution bias on our observations we have modelled the effective angular-size distribution of the sources in our sample and we have used this distribution to simulate a sample of radio sources. Finally we present the radio count distribution down to 0.08 mJy derived from the catalogue. Our counts are in good agreement with the best fit derived from earlier surveys, and are about 50 % higher than the counts in the HDF. The radio count distribution clearly shows, with extremely good statistics, the change in the slope for the sub-mJy radio sources.Comment: 13 pages, Accepted for publication in Astronomy & Astrophysic
    corecore