63 research outputs found

    Molecular dynamics study of accelerated ion-induced shock waves in biological media

    Get PDF
    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model

    Radiosensitization of DNA in presence of Pt(II)-based compounds

    Get PDF
    X-ray irradiation of plasmid DNA in presence of platinum (II)-based compounds was carried out in order to assess the radiosensitization capabilities of these drugs. In present investigations pBR322 plasmid DNA was used to monitor effectiveness of chosen compounds in inducing strand breaks. Samples were incubated in presence of potential radiosensitisers: platinum (II) bromide and cis-diamminedibromoplatinum (II). The results were examined against a common cancer chemotherapy drug cis-diamminedichloroplatinum (II). It was found that platinum (II) bromide can greatly increase the levels of single- and double-strand break formation observed in the irradiated samples with respect to the samples containing platinum as a radiosensitizer only, possessing very little chemotherapeutic activity. The suggested drugs exhibit much higher level of radiosensitivity than widely used cisplatin and thus may be good candidates for cancer treatment

    Roadmap on dynamics of molecules and clusters in the gas phase

    Get PDF
    This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science

    Electron Impact Spectroscopy

    No full text
    Free electrons strongly interact with any kind of matter transferring energy and initiating reactions. On one hand they are used in analytical methods and on the other hand they cause intentional and unintentional damages in biological tissue. In this article the basic underlying molecular reactions initiated by electron impact are introduced and some common spectroscopic techniques to analyze and quantify electron collisions are illustrated. Subsequently, some exemplary spectroscopic studies of electron scattering on bio-relevant molecules are discussed. This includes comments on present limitations and future prospects of this technique

    Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    Get PDF
    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118–120 u, 107–108 u, 91–92 u, and 54–56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV
    • …
    corecore