1,948 research outputs found

    The dynamical structure of the MEO region: long-term stability, chaos, and transport

    Full text link
    It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Recent studies have shown that the occurrence and nature of the resonances driving these dynamics depend chiefly on the frequencies of nodal and apsidal precession and the rate of regression of the Moon's nodes. Woven throughout the inclination and eccentricity phase space is an exceedingly complicated web-like structure of lunisolar secular resonances, which become particularly dense near the inclinations of the navigation satellite orbits. A clear picture of the physical significance of these resonances is of considerable practical interest for the design of disposal strategies for the four constellations. Here we present analytical and semi-analytical models that accurately reflect the true nature of the resonant interactions, and trace the topological organization of the manifolds on which the chaotic motions take place. We present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonance-overlap criterion. As the semi-major axis of the satellite is receding, we observe a transition from stable Nekhoroshev-like structures at three Earth radii, where regular orbits dominate, to a Chirikov regime where resonances overlap at five Earth radii. From a numerical estimation of the Lyapunov times, we find that many of the inclined, nearly circular orbits of the navigation satellites are strongly chaotic and that their dynamics are unpredictable on decadal timescales.Comment: Submitted to Celestial Mechanics and Dynamical Astronomy. Comments are greatly appreciated. 28 pages, 15 figure

    Searching for unknown open clusters in the Tycho-2 catalog

    Full text link
    We present 11 new open cluster candidates found in a systematic search for unknown star clusters using the astrometric and photometric data included in the Tycho2 catalog. The possible existence of these stellar aggregates is supported by the analysis of proper motions, color-magnitude diagrams, stellar density distributions, and by the visual inspection of the Digitized Sky Survey (DSS) plates. With these tools we were able to determine mean absolute proper motions as well as preliminary reddenings, distances and ages for the majority of the candidates. We found that most of them are possibly nearby (closer than about 600 pc) open clusters never studied before.Comment: 14 pages, 6 figures. Accepted by A&

    Saturated 13.2 nm high-repetition-rate laser in nickel-like cadmium

    Get PDF
    Includes bibliographical references (page 2583).We report gain-saturated operation of a 13.2 nm tabletop laser in Ni-like Cd at a 5 Hz repetition rate. A gain-length product G×L=17.6 was obtained by heating a precreated plasma with 8 ps duration Ti:sapphirelaser pulses with an energy of only 1 J impinging at a grazing angle of 23°. With an average power of ~1 mW, this laser is an attractive coherent source for at-wavelength metrology of extreme UV lithography optics and other applications

    Rider Variables Affecting the Stirrup Directional Force Asymmetry during Simulated Riding Trot

    Get PDF
    Riders' asymmetry may cause back pain in both human and equine athletes. This pilot study aimed at documenting in a simple and quick way asymmetry in riders during a simulation of three different riding positions on wooden horseback using load cells applied on the stirrup leathers and identifying possible associations between riders' asymmetry and their gender, age, level of riding ability, years of riding experience, riding style, motivation of riding, primary discipline and handedness. After completing an interview to obtain the previously mentioned information, 147 riders performed a standardized test on a saddle fixed on a wooden horseback-shaped model. The riding simulation was split into three phases of 1 min each: (1) sit in the saddle, (2) standing in the stirrups and (3) rising trot. The directional force on the left and the right stirrup leathers was recorded every 0.2 s. A paired t-test was performed on the recorded data to test the difference (i.e., asymmetry) in each phase. In phases 1, 2 and 3, 99.3% (53.4% heavier on the right (R)), 98% (52.8% heavier on the left (L)) and 46.3% (51.5% heavier on the left (L)) of the riders were asymmetrical, respectively. Chi-square tests showed a significant association between riding ability and riding experience, but no significant association between reported handedness and calculated leg-sidedness (p > 0.05). Univariate logistic (1: asymmetry, 0: symmetry) regression analysis was performed only on the phase 3 data. One-hand riders were found twice more likely to be asymmetrical than two-hand riders (Odds Ratio (OR): 2.18, Confidence Interval (CI): 1.1-4.29; p = 0.024). This preliminary study confirmed that the majority of the riders are asymmetrical in load distribution on stirrups and suggested the riding style as a possible risk factor for asymmetry

    Alessi 95 and the short period Cepheid SU Cassiopeiae

    Get PDF
    The parameters for the newly-discovered open cluster Alessi 95 are established on the basis of available photometric and spectroscopic data, in conjunction with new observations. Colour excesses for spectroscopically-observed B and A-type stars near SU Cas follow a reddening relation described by E(U-B)/E(B-V)=0.83+0.02*E(B-V), implying a value of R=Av/E(B-V)~2.8 for the associated dust. Alessi 95 has a mean reddening of E(B-V)_(B0)=0.35+-0.02 s.e., an intrinsic distance modulus of Vo-Mv=8.16+-0.04 s.e. (+-0.21 s.d.), d=429+-8 pc, and an estimated age of 10^8.2 yr from ZAMS fitting of available UBV, CCD BV, NOMAD, and 2MASS JHKs observations of cluster stars. SU Cas is a likely cluster member, with an inferred space reddening of E(B-V)=0.33+-0.02 and a luminosity of =-3.15+-0.07 s.e., consistent with overtone pulsation (P_FM=2.75 d), as also implied by the Cepheid's light curve parameters, rate of period increase, and Hipparcos parallaxes for cluster stars. There is excellent agreement of the distance estimates for SU Cas inferred from cluster ZAMS fitting, its pulsation parallax derived from the infrared surface brightness technique, and Hipparcos parallaxes, which all agree to within a few percent.Comment: Accepted for Publication (MNRAS
    corecore