
October 1, 2005 / Vol. 30, No. 19 / OPTICS LETTERS 2581

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Mountain Scholar (Digital Collections of Colorado and Wyoming)
Saturated 13.2 nm high-repetition-rate laser in
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We report gain-saturated operation of a 13.2 nm tabletop laser in Ni-like Cd at a 5 Hz repetition rate. A
gain–length product G�L=17.6 was obtained by heating a precreated plasma with 8 ps duration Ti:sap-
phire laser pulses with an energy of only 1 J impinging at a grazing angle of 23°. With an average power of
�1 mW, this laser is an attractive coherent source for at-wavelength metrology of extreme UV lithography
optics and other applications. © 2005 Optical Society of America

OCIS codes: 140.7240, 340.7480.
There is significant interest in the development of
compact high-average-power soft-x-ray lasers for a
variety of applications. In particular, there is a need
for the development of compact coherent sources
emitting at wavelengths within the bandwidth of the
Mo–Si mirrors centered at 13.5 nm for at-wavelength
metrology of extreme ultraviolet (EUV) projection li-
thography optics.1 Laser amplification at this wave-
length was demonstrated at a 2–3 Hz repetition rate
in H-like Li ions following collisional recombination
of completely ionized Li atoms in plasmas created by
optical field ionization.2,3 However, the maximum
amplification reported to date for this laser excitation
scheme,4 a gain–length product of G�L�6–7, is still
insufficient to produce the laser output pulse ener-
gies and average powers required for most applica-
tions. Saturated laser operation at a repetition rate
of one shot every several minutes has been obtained
at 13.9 and 13.2 nm by transient collisional electron
excitation of Ag and Cd targets with a combination of
a nanosecond and picosecond laser pump pulses im-
pinging in the direction normal to the target surface.
In those experiments5,6 the short-pulse pump energy
was 3–7 J.

Approaches investigated to reduce the pump en-
ergy necessary to produce saturated collisional lasers
at wavelengths below 20 nm have included the use of
longitudinal pumping.7 In recent work8–11 it was
shown that the short-pulse pump energy required
can be significantly decreased by directing this pump
beam onto the target at a grazing angle �. This
pumping geometry takes advantage of the refraction
of the pump beam to increase the path length of the
rays in the gain region of the plasma, thereby in-
creasing the fraction of the pump energy absorbed in
that region.10 It is inherently a traveling wave, with
a traveling wave pump speed v=c / cos � (e.g., v
=1.09c at �=23°). Excitation of Mo plasmas at graz-
ing incidence angles has resulted in G�L�14 ampli-
fication at a 10 Hz repetition rate9 and gain satura-
tion operation at 5 Hz (Ref. 10) in the 18.9 nm line of
Ni-like Mo. Very recently,11 saturated operation at a
5 Hz repetition rate has been obtained at 13.9 nm in
a Ni-like Ag plasma heated with 1 J pulses of 8 ps

duration impinging at a grazing incidence angle of
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23°. However, at this laser wavelength the reflectiv-
ity of a single Mo–Si mirror centered at 13.5 nm is
only about 10%.12 This low reflectivity significantly
limits the use of a Ni-like Ag laser in at-wavelength
metrology of EUV optical systems composed of mul-
tiple mirrors.

In this Letter we report the demonstration of a
saturated 5 Hz repetition rate laser emitting highly
monochromatic light at 13.2 nm in the 4d1S0–4p1P1
transition of Ni-like Cd ions. An amplification of G
�L=17.6 was obtained by heating a precreated
plasma with 8 ps pulses of only 1 J energy. This
wavelength falls within the bandwidth of the Mo–Si
multilayer coatings designed for EUV lithography,
which at this wavelength have a reflectivity of about
50%. The laser was pumped by a tabletop Ti:sapphire
chirped-pulse amplification laser system ��
=800 nm� consisting of a Kerr mode-locked oscillator
and three stages of amplification. Pulses from the la-
ser oscillator were stretched to about 120 ps and
were subsequently amplified in a chain consisting of
three Ti:sapphire amplifiers: an eight-pass first stage
amplifier, a five-pass second stage amplifier, and a fi-
nal three-pass amplifier. A multilayer coated beam
splitter was placed at the output of the third-stage
amplifier to direct 20% of the laser energy to a
prepulse arm. The rest of the third-stage amplifier
output was sent to a vacuum-grating compressor.
This laser can operate at a repetition rate of 10 Hz,
corresponding to the repetition frequency of the two
Nd:YAG lasers used to pump the amplifiers, but in
the present experiments the repetition rate of the
third amplifier was reduced to 5 Hz with the purpose
of improving the pump beam mode quality.

The soft-x-ray laser amplifier consisted of a line fo-
cus plasma up to 4 mm in length generated by excit-
ing a 2 mm thick polished Cd slab target with a se-
quence of an early prepulse of 120 ps duration and
15 mJ energy, followed after about 5 ns by a main
prepulse of the same duration and �350 mJ energy,
which in turn was followed after a variable delay
(typically 100–200 ps) by an 8 ps duration, �1 J en-
ergy heating pulse. The prepulse beam was focused
into a 30 �m wide, 4.1 mm FWHM line focus by us-
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ing the combination of an f=67.5 cm focal length
spherical lens and an f=200 cm focal length cylindri-
cal lens. The short pulse was focused into a similar
line focus by utilizing a parabolic mirror of f
=76.2 cm positioned at 7° from normal incidence. The
off-axis placement of the paraboloid formed an astig-
matic focus that resulted in a line that was further
elongated to 4.1 mm when intercepted at grazing in-
cidence by the target. The target surface was tilted
with respect to the axis of the prepulse beam to form
grazing incidence angles of 17°, 20°, 23°, or 26° with
respect to the axis of the short pulse beam. The over-
lap of the line foci on target was observed and ad-
justed by imaging the target into a CCD, utilizing
digital zoom. The output of the x-ray laser was ana-
lyzed by using a flat field spectrograph composed of a
variably spaced 1200 lines/mm Ag-coated spherical
grating placed at 3° grazing incidence and a 2048
�2048 channel, 1 in. square �1 in.=2.54 cm�, back-
illuminated CCD detector placed 48 cm from the tar-
get. Spectral filtering and attenuation were per-
formed by using Zr filters and meshes of known
transmission between the target and the grating.

Figure 1 shows a typical on-axis spectrum corre-
sponding to a 4 mm long Cd plasma heated by a 1 J
pulse of 8 ps FWHM duration impinging onto the tar-
get at 23° grazing incidence angle. The 4d1S0–4p1P1
laser line of Ni-like Cd completely dominates the
spectrum. Lasing was observed with pumping ener-
gies as low as �180 mJ for the main prepulse and
�460 mJ for the short pulse. The laser beam diver-
gence was measured to be �14 mrad in the direction
parallel to the target and �7 mrad in the perpen-
dicular direction. Figure 2 shows the variation of the
laser output intensity as a function of the grazing in-
cidence angle of the pump beam. As the angle of in-
cidence, �, is incremented, the electron density of the
plasma region in which refraction couples the pump
beam increases as ne=�2�nec, where nec is the criti-
cal density. At the lower angles refraction couples the
pump beam into a plasma region at which the den-

Fig. 1. Single-shot on-axis spectrum of a 4 mm long Cd
plasma column. The short-pulse energy was 1 J. The
13.2 nm laser line of Ni-like Cd is observed to completely
dominate the spectrum.
sity is lower than optimum for amplification by tran-
sient collisional excitation. The maximum laser out-
put intensity is observed at an angle of 23°, for which
the plasma density is 2.8�1020 cm−3.

As shown in Fig. 3, lasing is observed for a broad
range of time delays between the prepulse and the
heating pulse. Optimum amplification is observed to
occur for a time delay of 100–200 ps. The optimum
delay for lasing in this Ni-like Cd line is observed to
be significantly shorter than the �700 ps required for
maximum laser output in the 18.9 nm line of Ni-like
Mo.10 This is consistent with the fact that the higher
degree of ionization necessary for lasing in Ni-like Cd
is present only in the early stages of the prepulse
plasma expansion.

The gain was measured by integrating the laser
line intensity as a function of plasma length. For this
purpose a Cd target with steps ranging from
1.5 to 4 mm in length was used. Figure 4 shows the
results obtained at the optimized grazing incidence
angle of 23°. The 13.2 nm laser line intensity in-
creases exponentially until it rolls off into saturation
for target lengths above 2 mm. The gain was evalu-
ated by fitting the data with the expression by Tall-

Fig. 2. Variation of the intensity of the 13.2 nm line of Ni-
like Cd as a function of grazing incidence angle of the 8 ps
beam onto the target.

Fig. 3. Variation of the intensity of the 13.2 nm line of Ni-
like Cd as a function of time delay between the 120 ps

prepulse and the 8 ps heating pulse.
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ents et al. for the variation of the line intensity with
plasma length, taking into account gain saturation.13

The resulting small signal gain coefficient is 69 cm−1,
and the gain–length product reaches G�L=17.6, a
value at which collisionally excited soft-x-ray laser
systems are normally in the gain-saturated regime.
The energy of the most intense laser pulses was esti-
mated from the CCD counts to exceed 430 nJ, taking
into account the attenuation losses of the filters and
meshes, the grating efficiency, and the quantum effi-
ciency of the detector. Assuming the laser pulse width
is that predicted by model computations, �5 ps, and
an exit beam diameter corresponding to the width of
the pump beam, 30 �m, the 13.2 nm laser beam
is estimated to reach an intensity of �1.2
�1010 W cm−2, which exceeds the computed satura-
tion intensity of this line �0.5–0.8��1010 W cm−2 for
the plasma conditions corresponding to a grazing in-
cidence angle of 23°.

Figure 5 illustrates a sequence of 150 contiguous
shots obtained at a 5 Hz repetition rate. The data

Fig. 4. Variation of the intensity of the 13.2 nm line of Ni-
like Cd as a function of plasma column length. The fit of the
data corresponds to a small signal gain of 69 cm−1 and a
gain–length product of 17.6. The filled triangles are the av-
erage of about 10 laser shots.

Fig. 5. Sequence of 150 contiguous laser pulses of the
13.2 nm Ni-like Cd laser acquired at a 5 Hz repetition rate.
The grazing angle of incidence of the short pulse was 20°.
were obtained while the target was moved at a veloc-
ity of 0.2 mm/s to avoid the soft-x-ray laser pulse
output energy degradation that occurs when more
than two shots are fired onto the same target loca-
tion. Lasing is observed for all shots with an inten-
sity variation characterized by a standard deviation
equal to 23% of the mean. The average output power
is of the order of 1 �W. Optimization of the pump la-
ser should allow operation at a 10 Hz repetition rate
and a corresponding increase in the average power.

In summary, we have demonstrated saturated las-
ing at 13.2 nm at a repetition rate of 5 Hz with a
tabletop pump laser. This high-repetition-rate laser
is of interest for numerous applications, in particular
the metrology of EUV lithography optics.
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