317 research outputs found

    Photosynthetic responses of Amygdalus arabica Olivier and Atriplex canescens (Pursh) Nutt. to drought stress under field conditions

    Get PDF
    The central Anatolian region of Turkey is exposed to increasing temperatures and severe drought stress. Due to aridity and desertification brought about by global warming, climate change and overutilization, plant species in these regions are under the risk of extinction. Thus, plant species have to adapt to these harsh environmental conditions of extremely high temperatures and low precipitation. In this study, gas exchange and water potentials of the Arabian almond tree Amygdalus arabica Olivier (C3-photosynthesis) and four-winged saltbush Atriplex canescens (Pursh) Nutt. (C4-photosynthesis), two drought-tolerant woody species planted previously in an effort to reduce desertification at Karapınar, Konya, and Central Anatolian Region, were periodically measured from May until September under field conditions. Net photosynthesis and transpiration rates, mid-day water potential and water use efficiency were determined throughout the vegetation period in 2015. Maximum net photosynthetic rates were 12.4 μmol m–2 s–1 in the Arabian almond tree and 29.7 μmol m–2 s–1 in four-winged saltbush, measured in July and September, respectively. Also, the highest transpiration rates were 4.8 mmol m–2 s–1 in the Arabian almond tree and 7.1 mmol m–2 s–1 in four-winged saltbush. Maximum water use efficiency values were measured in June in both species, which made up 5.7 and 7.7 mmol CO2 mol–1 H2O for the Arabian almond tree and four-winged saltbush, respectively. Lowest midday water potentials for both species were recorded in August. The results indicate that both species have the ability to tolerate drought stress in the region, though due to its C4 nature of photosynthesis, the four-winged saltbush might overcome those stresses more efficiently than the Arabian almond tree in arid and barren areas

    Risk based facility location by using fault tree analysis in disaster management

    Get PDF
    Determining the locations of facilities for prepositioning supplies to be used during a disaster is a strategic decision that directly affects the success of disaster response operations. Locating such facilities close to the disaster-prone areas is of utmost importance to minimize response time. However, this is also risky because the facility may be disrupted and hence may not support the demand point(s). In this study, we develop an optimization model that minimizes the risk that a demand point may be exposed to because it is not supported by the located facilities. The purpose is to choose the locations such that a reliable facility network to support the demand points is constructed. The risk for a demand point is calculated as the multiplication of the (probability of the) threat (e.g., earthquake), the vulnerability of the demand point (the probability that it is not supported by the facilities), and consequence (value or possible loss at the demand point due to threat). The vulnerability of a demand point is computed by using fault tree analysis and incorporated into the optimization model innovatively. To our knowledge, this paper is the first to use such an approach. The resulting non-linear integer program is linearized and solved as a linear integer program. The locations produced by the proposed model are compared to those produced by the p-center model with respect to risk value, coverage distance, and covered population by using several test problems. The model is also applied in a real problem. The results indicate that taking the risk into account explicitly may create significant differences in the risk levels. © 2014 Elsevier Ltd

    Does Gender Impact Intensity of Care Provided to Older Medical Intensive Care Unit Patients?

    Get PDF
    Introduction. Women receive less aggressive critical care than men based on prior studies. No documented studies evaluate whether men and women are treated equally in the medical intensive care unit (MICU). The Therapeutic Intervention Scoring System-28 (TISS-28) has been used to examine gender differences in mixed ICU studies. However, it has not been used to evaluate equivalence of care in older MICU patients. We hypothesize that given nonsignificant, baseline health differences between genders at MICU admission, the level of care provided would be equivalent. Methods. Prospective cohort of 309 patients ≥60 years old in the MICU of an urban university teaching hospital. Explanatory variables were demographic data and baseline measures. Primary outcomes were TISS-28 scores and MICU interventions. We compare TISS-28 scores by gender using a statistical test of equivalence. Results. Women were older and had more chronic respiratory failure at MICU admission. Using equivalence limits of ±15% on gender-based scores of TISS-28, MICU interventions were equivalent. Supplementary analysis showed no statistically significant association between gender and mortality. Conclusions. In contrast with other reports from the cardiac critical care literature, as measured by the TISS-28, gender-based care delivered to older MICU patients in this cohort was equivalent

    Incompatibility of long-period neutron star precession with creeping neutron vortices

    Get PDF
    Aims: To determine whether ``vortex creep'' in neutron stars, the slow motion of neutron vortices with respect to pinning sites in the core or inner crust, is consistent with observations of long-period precession. Methods: Using the concept of vortex drag, I discuss the precession dynamics of a star with imperfectly-pinned (i.e., "creeping'') vortices. Results: The precession frequency is far too high to be consistent with observations, indicating that the standard picture of the outer core (superfluid neutrons in co-existence with type II, superconducting protons) should be reconsidered. There is a slow precession mode, but it is highly over-damped and cannot complete even a single cycle. Moreover, the vortices of the inner crust must be able to move with little dissipation with respect to the solid.Comment: 4 pages, v3. Missing reference adde

    Tkachenko waves, glitches and precession in neutron star

    Full text link
    Here I discuss possible relations between free precession of neutron stars, Tkachenko waves inside them and glitches. I note that the proposed precession period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is consistent with the period of Tkachenko waves for the spin period 8.4s. Based on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al. 2007), I propose a simple model, in which long period precession is powered by Tkachenko waves generated by a glitch. The period of free precession, determined by a NS oblateness, should be equal to the standing Tkachenko wave period for effective energy transfer from the standing wave to the precession motion. A similar scenario can be applicable also in the case of the PSR B1828-11.Comment: 6 pages, no figures, accepted to Ap&S

    Structure, Deformations and Gravitational Wave Emission of Magnetars

    Full text link
    Neutron stars can have, in some phases of their life, extremely strong magnetic fields, up to 10^15-10^16 G. These objects, named magnetars, could be powerful sources of gravitational waves, since their magnetic field could determine large deformations. We discuss the structure of the magnetic field of magnetars, and the deformation induced by this field. Finally, we discuss the perspective of detection of the gravitational waves emitted by these stars.Comment: 11 pages, 2 figures, prepared for 19th International Conference on General Relativity and Gravitation (GR19), Mexico City, Mexico, July 5-9, 201

    Experimental analysis of a paraffin-based cold storage tank

    Full text link
    [EN] The aim of this study is to characterize a paraffin-based cold storage tank. Novel experimental results are presented for this system which combines a significant amount of paraffin (1450 kg) immersed around 18 spiral-shaped coils disposed in counter-current flow. The paraffin has a phase-change temperature in the range 4 8 °C as measured by a 3-layer calorimeter. Different tests have been carried out with a constant mass flow rate and supply temperature. Around 31% of the paraffin has hardly any contact with the coils and hereby acts as a dead mass. The results show the importance of natural convection within the phase-change-material, particularly during the melting process. The highest efficiency has been achieved for the lowest supply temperatures and mass flow rates of the heat transfer fluid.The authors gratefully acknowledge the fundings from ACCIONA Infraestructuras.Torregrosa-Jaime, B.; López-Navarro, A.; Corberán, JM.; Esteban-Matías, JC.; Klinkner, L.; Payá-Herrero, J. (2013). Experimental analysis of a paraffin-based cold storage tank. International Journal of Refrigeration. 36(6):1632-1640. doi:10.1016/j.ijrefrig.2013.05.001S1632164036

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe

    Reversal of diastereoselectivity in the synthesis of Peptidomimetic 3‑Carboxamide-1,4-benzodiazepin-5-ones

    Get PDF
    Enantiopure 3-carboxamide-1,4-benzodiazepin-5-ones were synthesized via the Ugi reaction followed by the Staudinger/aza-Wittig or reduction reactions in only two steps. A complete reversal of diastereoselectivity was achieved depending on the cyclization methodology employed. The different orientation of the C3 substituent in our 3-substituted 1,4-benzodiazepin-5-ones with respect to the most studied 1,4-benzodiazepin-2-ones makes them complementary in the development of new drugs because the primary source of binding selectivity of 1,4-benzodiazepines is the selective recognition of ligand conformations by the receptor.Ministerio de Economía y Competitividad, Spain (Project CTQ2012-31611), Junta de Castilla y León, Consejería de Educación y Cultura y Fondo Social Europeo (Project BU246A12-1) and the European Commission, Seventh Framework Programme (Project SNIFFER FP7-SEC-2012-312411)
    corecore