3,197 research outputs found

    Reflection of light and heavy holes from a linear potential barrier

    Full text link
    In this paper we study reflection of holes in direct-band semiconductors from the linear potential barrier. It is shown that light-heavy hole transformation matrix is universal. It depends only on a dimensionless product of the light hole longitudinal momentum and the characteristic length determined by the slope of the potential and doesn't depend on the ratio of light and heavy hole masses, provided this ratio is small. It is shown that the transformation coefficient goes to zero both in the limit of small and large longitudinal momenta, however the phase of a reflected hole is different in these limits. An approximate analytical expression for the light-heavy hole transformation coefficient is found.Comment: 6 pages, 2 figure

    Quadratic response theory for spin-orbit coupling in semiconductor heterostructures

    Full text link
    This paper examines the properties of the self-energy operator in lattice-matched semiconductor heterostructures, focusing on nonanalytic behavior at small values of the crystal momentum, which gives rise to long-range Coulomb potentials. A nonlinear response theory is developed for nonlocal spin-dependent perturbing potentials. The ionic pseudopotential of the heterostructure is treated as a perturbation of a bulk reference crystal, and the self-energy is derived to second order in the perturbation. If spin-orbit coupling is neglected outside the atomic cores, the problem can be analyzed as if the perturbation were a local spin scalar, since the nonlocal spin-dependent part of the pseudopotential merely renormalizes the results obtained from a local perturbation. The spin-dependent terms in the self-energy therefore fall into two classes: short-range potentials that are analytic in momentum space, and long-range nonanalytic terms that arise from the screened Coulomb potential multiplied by a spin-dependent vertex function. For an insulator at zero temperature, it is shown that the electronic charge induced by a given perturbation is exactly linearly proportional to the charge of the perturbing potential. These results are used in a subsequent paper to develop a first-principles effective-mass theory with generalized Rashba spin-orbit coupling.Comment: 20 pages, no figures, RevTeX4; v2: final published versio

    Long-distance remote comparison of ultrastable optical frequencies with 1e-15 instability in fractions of a second

    Full text link
    We demonstrate a fully optical, long-distance remote comparison of independent ultrastable optical frequencies reaching a short term stability that is superior to any reported remote comparison of optical frequencies. We use two ultrastable lasers, which are separated by a geographical distance of more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a commercial telecommunication network. The remote characterization spans more than one optical octave and reaches a fractional frequency instability between the independent ultrastable laser systems of 3e-15 in 0.1 s. The achieved performance at 100 ms represents an improvement by one order of magnitude to any previously reported remote comparison of optical frequencies and enables future remote dissemination of the stability of 100 mHz linewidth lasers within seconds.Comment: 7 pages, 4 figure

    First-principles envelope-function theory for lattice-matched semiconductor heterostructures

    Full text link
    In this paper a multi-band envelope-function Hamiltonian for lattice-matched semiconductor heterostructures is derived from first-principles norm-conserving pseudopotentials. The theory is applicable to isovalent or heterovalent heterostructures with macroscopically neutral interfaces and no spontaneous bulk polarization. The key assumption -- proved in earlier numerical studies -- is that the heterostructure can be treated as a weak perturbation with respect to some periodic reference crystal, with the nonlinear response small in comparison to the linear response. Quadratic response theory is then used in conjunction with k.p perturbation theory to develop a multi-band effective-mass Hamiltonian (for slowly varying envelope functions) in which all interface band-mixing effects are determined by the linear response. To within terms of the same order as the position dependence of the effective mass, the quadratic response contributes only a bulk band offset term and an interface dipole term, both of which are diagonal in the effective-mass Hamiltonian. Long-range multipole Coulomb fields arise in quantum wires or dots, but have no qualitative effect in two-dimensional systems beyond a dipole contribution to the band offsets.Comment: 25 pages, no figures, RevTeX4; v3: final published versio

    High intensity exercise decreases IP6K1 muscle content & improves insulin sensitivity in glucose intolerant individuals

    Get PDF
    Context Insulin resistance in skeletal muscle contributes to whole body hyperglycaemia and the secondary complications associated with type 2 diabetes. Inositol hexakisphosphate kinase-1 (IP6K1) may inhibit insulin-stimulated glucose transport in this tissue type. Objective Muscle and plasma IP6K1 were correlated with two-compartment models of glucose control in insulin-resistant hyperinsulimic individuals. Muscle IP6K1 was also compared following two different exercise trials. Methods Nine pre-diabetic [HbA1c; 6.1 (0.2) %)] were recruited to take part in a resting control, a continuous exercise (90% of lactate threshold) and a high-intensity exercise trial (6 x 30 sec sprints). Muscle biopsies were drawn pre- and post each 60-minute trial. A labeled ([6,62H2]glucose) intravenous glucose tolerance test (IVGTT) was performed immediately after the second muscle sample. Results Fasting muscle IP6K1 content did not correlate with SI2* (P = 0.961). High-intensity exercise reduced IP6K1 muscle protein and mRNA expression (P = 0.001). There was no effect on protein IP6K1 content following continuous exercise. Akt308 phosphorylation of was significantly greater following high-intensity exercise. Intermittent exercise reduced hepatic glucose production (HGP) following the same trial. The same intervention also improved SI2* and this was significantly greater compared to the continuous exercise improvements. Our in vitro experiment demonstrated that the chemical inhibition of IP6K1 increased insulin signaling in C2C12 myotubes. Conclusions The in vivo and in vitro approaches used in the current study suggest that a decrease in muscle IP6K1 may be linked to whole body improvements in SI2*. In addition, high-intensity exercise reduces HPG in insulin-resistant individuals

    Least action principle for envelope functions in abrupt heterostructures

    Full text link
    We apply the envelope function approach to abrupt heterostructures starting with the least action principle for the microscopic wave function. The interface is treated nonperturbatively, and our approach is applicable to mismatched heterostructure. We obtain the interface connection rules for the multiband envelope function and the short-range interface terms which consist of two physically distinct contributions. The first one depends only on the structure of the interface, and the second one is completely determined by the bulk parameters. We discover new structure inversion asymmetry terms and new magnetic energy terms important in spintronic applications.Comment: 4 pages, 1 figur

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.

    Ballistic Performance of Porous Ceramic Thermal Protection Systems at 9 km/s

    Get PDF
    Porous-ceramic, thermal-protection-systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components and sensitive electronic components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s on ceramic tiles similar to those used on the Orbiter. These tiles have a porous-batting of nominally 8 lb/cubic ft alumina-fiber-enhanced-thermal-barrier (AETB8) insulating material coated with a damage-resistant, toughened-unipiece-fibrous-insulation (TUFI) layer

    Bayesian Methods for Exoplanet Science

    Full text link
    Exoplanet research is carried out at the limits of the capabilities of current telescopes and instruments. The studied signals are weak, and often embedded in complex systematics from instrumental, telluric, and astrophysical sources. Combining repeated observations of periodic events, simultaneous observations with multiple telescopes, different observation techniques, and existing information from theory and prior research can help to disentangle the systematics from the planetary signals, and offers synergistic advantages over analysing observations separately. Bayesian inference provides a self-consistent statistical framework that addresses both the necessity for complex systematics models, and the need to combine prior information and heterogeneous observations. This chapter offers a brief introduction to Bayesian inference in the context of exoplanet research, with focus on time series analysis, and finishes with an overview of a set of freely available programming libraries.Comment: Invited revie
    • …
    corecore