147 research outputs found

    Toward Forecasting Volcanic Eruptions using Seismic Noise

    Full text link
    During inter-eruption periods, magma pressurization yields subtle changes of the elastic properties of volcanic edifices. We use the reproducibility properties of the ambient seismic noise recorded on the Piton de la Fournaise volcano to measure relative seismic velocity variations of less than 0.1 % with a temporal resolution of one day. Our results show that five studied volcanic eruptions were preceded by clearly detectable seismic velocity decreases within the zone of magma injection. These precursors reflect the edifice dilatation induced by magma pressurization and can be useful indicators to improve the forecasting of volcanic eruptions.Comment: Supplementary information: http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguier_SI.pdf Supplementary video: http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguierMovieVolcano.av

    Source Mechanism of Small Long-Period Events at Mount St. Helens in July 2005 Using Template Matching, Phase-Weighted Stacking, and Full-Waveform Inversion

    Get PDF
    Long-period (LP, 0.5-5 Hz) seismicity, observed at volcanoes worldwide, is a recognized signature of unrest and eruption. Cyclic LP “drumbeating” was the characteristic seismicity accompanying the sustained dome-building phase of the 2004–2008 eruption of Mount St. Helens (MSH), WA. However, together with the LP drumbeating was a near-continuous, randomly occurring series of tiny LP seismic events (LP “subevents”), which may hold important additional information on the mechanism of seismogenesis at restless volcanoes. We employ template matching, phase-weighted stacking, and full-waveform inversion to image the source mechanism of one multiplet of these LP subevents at MSH in July 2005. The signal-to-noise ratios of the individual events are too low to produce reliable waveform inversion results, but the events are repetitive and can be stacked. We apply network-based template matching to 8 days of continuous velocity waveform data from 29 June to 7 July 2005 using a master event to detect 822 network triggers. We stack waveforms for 359 high-quality triggers at each station and component, using a combination of linear and phase-weighted stacking to produce clean stacks for use in waveform inversion. The derived source mechanism points to the volumetric oscillation (∌10 m3) of a subhorizontal crack located at shallow depth (∌30 m) in an area to the south of Crater Glacier in the southern portion of the breached MSH crater. A possible excitation mechanism is the sudden condensation of metastable steam from a shallow pressurized hydrothermal system as it encounters cool meteoric water in the outer parts of the edifice, perhaps supplied from snow melt

    Effect of mandibular advancement therapy on inflammatory and metabolic biomarkers in patients with severe obstructive sleep apnoea: a randomised controlled trialTrial registration number

    Get PDF
    Systemic inflammation and metabolic disorders are among the mechanisms linking obstructive sleep apnoea (OSA) and cardiovascular disease (CVD). In 109 patients with severe OSA and no overt CVD, biomarkers of inflammation (C reactive protein, interleukin-6, tumour necrosis factor-α and its receptors, adiponectin, leptin and P-selectin), glucose and lipid metabolism, and N-terminal pro-brain natriuretic peptide, were measured before and after 2 months of treatment with a mandibular advancement device (MAD) (n=55) or a sham device (n=54). MAD reduced the Apnoea–Hypopnoea Index (p<0.001) but had no effect on circulating biomarkers compared with the sham device, despite high treatment adherence (6.6 hour/night)

    Earthquake source parameters and scaling relationships in Hungary (central Pannonian basin)

    Get PDF
    Abstract Fifty earthquakes that occurred in Hungary (central part of the Pannonian basin) with local magnitude ML ranging from 0.8 to 4.5 have been analyzed. The digital seismograms used in this study were recorded by six permanent broad-band stations and twenty short-period ones at hypocentral distances between 10 and 327 km. The displacement spectra for P- and SH-waves were analyzed according to Brune’s source model. Observed spectra were corrected for path-dependent attenuation effects using an independent regional estimate of the quality factor QS. To correct spectra for near-surface attenuation, the k parameterwas calculated, obtaining it fromwaveforms recorded at short epicentral distances. The values of the k parameter vary between 0.01 to 0.06 s with a mean of 0.03 s for P-waves and between 0.01 to 0.09 s with a mean of 0.04 s for SH-waves. After correction for attenuation effects, spectral parameters (corner frequency and low-frequency spectral level) were estimated by a grid search algorithm. The obtained seismic moments range from4.21×1011 to 3.41×1015 Nm (1.7≀Mw ≀4.3). The source radii are between 125 and 1343 m. Stress drop values vary between 0.14 and 32.4 bars with a logarithmic mean of 2.59 bars (1 bar = 105 Pa). From the results, a linear relationship between local andmomentmagnitudes has been established. The obtained scaling relations show slight evidence of self-similarity violation. However, due to the high scatter of our data, the existence of self-similarity cannot be excluded

    Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption

    Get PDF
    Volatile element concentrations measured in melt inclusions are a key tool used to understand magma migration and degassing, although their original values may be affected by different re-equilibration processes. Additionally, the inclusion-bearing crystals can have a wide range of origins and ages, further complicating the interpretation of magmatic processes. To clarify some of these issues, here we combined olivine diffusion chronometry and melt inclusion data from the 2008 eruption of Llaima volcano (Chile). We found that magma intrusion occurred about 4 years before the eruption at a minimum depth of approximately 8 km. Magma migration and reaction became shallower with time, and about 6 months before the eruption magma reached 3–4 km depth. This can be linked to reported seismicity and ash emissions. Although some ambiguities of interpretation still remain, crystal zoning and melt inclusion studies allow a more complete understanding of magma ascent, degassing, and volcano monitoring data.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Published versio
    • 

    corecore