19 research outputs found

    Development of a multiplex PCR assay for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle

    Get PDF
    Tropical theileriosis, bovine babesiosis and anaplasmosis are tick-borne protozoan diseases that impose serious constraints on the health and productivity of domestic cattle in tropical and sub-tropical regions of the world. A common feature of these diseases is that, following recovery from primary infection, animals become persistent carriers of the pathogen and continue to play a critical role in disease epidemiology, acting as reservoirs of infection. This study describes development and evaluation of multiplex and single PCR assays for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle. Following in silico screening for candidate target genes representing each of the pathogens, an optimised multiplex PCR assay was established using three primer sets, cytob1, MAR1bB2 and bovar2A, for amplification of genomic DNA of T. annulata, A. marginale and B. bovis respectively. The designed primer sets were found to be species-specific, generating amplicons of 312, 265 and 166 base pairs, respectively and were deemed suitable for the development of a multiplex assay. The sensitivity of each primer pair was evaluated using serial dilutions of parasite DNA, while specificity was confirmed by testing for amplification from DNA of different stocks of each pathogen and other Theileria, Babesia and Anaplasma species. Additionally, DNA preparations derived from field samples were used to evaluate the utility of the single and multiplex PCRs for determination of infection status. The multiplex PCR was found to detect each pathogen species with the same level of sensitivity, irrespective of whether its DNA was amplified in isolation or together with DNA representing the other pathogens. Moreover, single and multiplex PCRs were able to detect each species with equal sensitivity in serially diluted DNA representing mixtures of T. annulata, B. bovis and A. marginale, and no evidence of non-specific amplification from non-target species was observed. Validation that the multiplex PCR efficiently detects single and mixed infections from field samples was demonstrated. The developed assay represents a simple and efficient diagnostic for co-detection of tropical theileriosis, bovine babesiosis and anaplasmosis, and may be a valuable tool for epidemiological studies aimed at assessing the burden of multiple infection with tick-borne pathogens and improving control of the associated diseases in endemic regions

    A New Single-Step PCR Assay for the Detection of the Zoonotic Malaria Parasite Plasmodium knowlesi

    Get PDF
    Recent studies in Southeast Asia have demonstrated substantial zoonotic transmission of Plasmodium knowlesi to humans. Microscopically, P. knowlesi exhibits several stage-dependent morphological similarities to P. malariae and P. falciparum. These similarities often lead to misdiagnosis of P. knowlesi as either P. malariae or P. falciparum and PCR-based molecular diagnostic tests are required to accurately detect P. knowlesi in humans. The most commonly used PCR test has been found to give false positive results, especially with a proportion of P. vivax isolates. To address the need for more sensitive and specific diagnostic tests for the accurate diagnosis of P. knowlesi, we report development of a new single-step PCR assay that uses novel genomic targets to accurately detect this infection.We have developed a bioinformatics approach to search the available malaria parasite genome database for the identification of suitable DNA sequences relevant for molecular diagnostic tests. Using this approach, we have identified multi-copy DNA sequences distributed in the P. knowlesi genome. We designed and tested several novel primers specific to new target sequences in a single-tube, non-nested PCR assay and identified one set of primers that accurately detects P. knowlesi. We show that this primer set has 100% specificity for the detection of P. knowlesi using three different strains (Nuri, H, and Hackeri), and one human case of malaria caused by P. knowlesi. This test did not show cross reactivity with any of the four human malaria parasite species including 11 different strains of P. vivax as well as 5 additional species of simian malaria parasites.The new PCR assay based on novel P. knowlesi genomic sequence targets was able to accurately detect P. knowlesi. Additional laboratory and field-based testing of this assay will be necessary to further validate its utility for clinical diagnosis of P. knowlesi

    Essential Domains of Anaplasma phagocytophilum Invasins Utilized to Infect Mammalian Host Cells

    Get PDF
    Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilumbinding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection

    Pathogen escape from host immunity by a genome program for antigenic variation

    No full text
    The vector-borne bacterium Borrelia hermsii, a relapsing fever agent, switches gene expression of a surface protein between different antigenic variants, thereby causing sequential waves of immune escape within hosts and increasing the likelihood of transmission. Analogous programmed systems of antigenic variation occur in African trypanosomes and Plasmodium falciparum. In these examples, switch rates to individual variants differ over a wide range. We studied how B. hermsii determines switch rates in two experimental infections: one where variants were identified by specific antisera and one based on identification by DNA sequence. Unexpressed loci of variant antigens copy into a single expression site at rates determined by extragenic features of silent loci rather than similarity between coding sequences of variants at silent sites and the single expression site. Two elements, in particular, determine switch rates. One set of elements overlaps the 5′ ends of the expressed gene and the silent loci; greater sequence identity between elements was associated with a higher switch rate. The second set of elements flanks the expression site on the 3′ side and occurs at variable distances downstream from silent loci; the nearer an element to a silent locus, the greater the switch rate of that locus into the expression site. In combination, these two features of the genome provide a simple mechanism to modulate switch rate whereby silent loci form a hierarchy of switch rates into the expression site. Although the switching hierarchy causes changes in individual cells that are stochastic, ordering of variants within hosts is semipredictable

    Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade

    Get PDF
    P. cynomolgi, a malaria-causing parasite of Asian Old World monkeys, is the sister taxon of P. vivax, the most prevalent malaria-causing species in humans outside of Africa. Because P. cynomolgi shares many phenotypic, biological and genetic characteristics with P. vivax, we generated draft genome sequences for three P. cynomolgi strains and performed genomic analysis comparing them with the P. vivax genome, as well as with the genome of a third previously sequenced simian parasite, Plasmodium knowlesi. Here, we show that genomes of the monkey malaria clade can be characterized by copy-number variants (CNVs) in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites and CNVs in the P. cynomolgi genome, providing a map of genetic variation that can be used to map parasite traits and study parasite populations. The sequencing of the P. cynomolgi genome is a critical step in developing a model system for P. vivax research and in counteracting the neglect of P. vivax

    Characterization and tissue-specific expression patterns of the <it>Plasmodium chabaudi cir </it>multigene family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variant antigens expressed on the surface of parasitized red blood cells (pRBCs) are important virulence factors of malaria parasites. Whereas <it>Plasmodium falciparum </it>erythrocyte membrane proteins 1 (PfEMP1) are responsible for sequestration of mature parasites, little is known about putative ligands mediating cytoadherence to host receptors in other <it>Plasmodium </it>species. Candidates include members of the <it>pir </it>superfamily found in the human parasite <it>Plasmodium vivax </it>(<it>vir</it>), in the simian pathogen <it>Plasmodium knowlesi </it>(<it>kir</it>) and in the rodent malarias <it>Plasmodium yoelii </it>(<it>yir</it>), <it>Plasmodium berghei </it>(<it>bir</it>) and <it>Plasmodium chabaudi </it>(<it>cir</it>). The aim of this study was to reveal a potential involvement of <it>cir </it>genes in <it>P. chabaudi </it>sequestration.</p> <p>Methods</p> <p>Subfamilies of <it>cir </it>genes were identified by bioinformatic analyses of annotated sequence data in the <it>Plasmodium </it>Genome Database. In order to examine tissue-specific differences in the expression of cir mRNAs, RT-PCR with subfamily-specific primers was used. In total, 432 cDNA clones derived from six different tissues were sequenced to characterize the transcribed <it>cir </it>gene repertoire. To confirm differences in transcription profiles of <it>cir </it>genes, restriction fragment length polymorphism (RFLP) analyses were performed to compare different host tissues and to identify changes during the course of <it>P. chabaudi </it>infections in immunocompetent mice.</p> <p>Results</p> <p>The phylogenetic analysis of annotated <it>P. chabaudi </it>putative CIR proteins identified two major subfamilies. Comparison of transcribed <it>cir </it>genes from six different tissues revealed significant differences in the frequency clones belonging to individual <it>cir </it>gene subgroups were obtained from different tissues. Further hints of difference in the transcription of <it>cir </it>genes in individual tissues were obtained by RFLP. Whereas only minimal changes in the transcription pattern of <it>cir </it>genes could be detected during the developmental cycle of the parasites, switching to expression of other <it>cir </it>genes during the course of an infection was observed around or after peak parasitemia.</p> <p>Conclusions</p> <p>The tissue-specific expression of cir mRNAs found in this study indicates correlation between expression of CIR antigens and distribution of parasites in inner organs. Together with comparable results for other members of the <it>pir </it>superfamily this suggests a role of <it>cir </it>and other <it>pir </it>genes in antigenic variation and sequestration of malaria parasites.</p
    corecore