1,366 research outputs found
On topological defect formation in the process of symmetry breaking phase transitions
By resorting to some results in quantum field theories with spontaneous
breakdown of symmetry we show that an explanation based on microscopic dynamics
can be given of the fact that topological defect formation is observed during
the process of non-equilibrium phase transitions characterized by a non-zero
order parameter. We show that the Nambu-Goldstone particle acquires an
effective non-zero mass due to the boundary (finite volume) effects and this is
related with the size of the defect. We also relate such volume effect with
temperature effect.Comment: 12 pages, no figure
On flavor conservation in weak interaction decays involving mixed neutrinos
In the context of quantum field theory (QFT), we compute the amplitudes of
weak interaction processes such as and by using different representations of
flavor states for mixed neutrinos. Analyzing the short time limit of the above
amplitudes, we find that the neutrino states defined in QFT as eigenstates of
the flavor charges lead to results consistent with lepton charge conservation.
On the contrary, the Pontecorvo flavor states produce a violation of lepton
charge in the vertex, which is in contrast with what expected at tree level in
the Standard Model.Comment: 15 page
Recommended from our members
Positive effects of methylphenidate on hyperactivity are moderated by monoaminergic gene variants in children with autism spectrum disorders.
Methylphenidate (MPH) reduces hyperactive-impulsive symptoms common in children with autism spectrum disorders (ASDs), however, response and tolerability varies widely. We hypothesized monoaminergic gene variants may moderate MPH effects in ASD, as in typically developing children with attention-deficit/hyperactivity disorder. Genotype data were available for 64 children with ASD and hyperactivity who were exposed to MPH during a 1-week safety/tolerability lead-in phase and 58 who went on to be randomized to placebo and three doses of MPH during a 4-week blinded, crossover study. Outcome measures included the Clinical Global Impression-Improvement (CGI-I) scale and the Aberrant Behavior Checklist (ABC-hyperactivity index). A total of 14 subjects discontinued the study because of MPH side effects. Subjects were genotyped for variants in DRD1-DRD5, ADRA2A, SLC6A3, SLC6A4, MAOA and MAOB, and COMT. Forty-nine percent of the sample met positive responder criteria. In this modest but relatively homogeneous sample, significant differences by DRD1 (P=0.006), ADRA2A (P<0.02), COMT (P<0.04), DRD3 (P<0.05), DRD4 (P<0.05), SLC6A3 (P<0.05) and SLC6A4 (P<0.05) genotypes were found for responders versus non-responders. Variants in DRD2 (P<0.001) and DRD3 (P<0.04) were associated with tolerability in the 14 subjects who discontinued the trial. For this first MPH pharmacogenetic study in children with ASD, multiple monoaminergic gene variants may help explain individual differences in MPH's efficacy and tolerability
Quantizing the damped harmonic oscillator
We consider the Fermi quantization of the classical damped harmonic
oscillator (dho). In past work on the subject, authors double the phase space
of the dho in order to close the system at each moment in time. For an
infinite-dimensional phase space, this method requires one to construct a
representation of the CAR algebra for each time. We show that unitary dilation
of the contraction semigroup governing the dynamics of the system is a logical
extension of the doubling procedure, and it allows one to avoid the
mathematical difficulties encountered with the previous method.Comment: 4 pages, no figure
Dissipation and spontaneous symmetry breaking in brain dynamics
We compare the predictions of the dissipative quantum model of brain with
neurophysiological data collected from electroencephalograms resulting from
high-density arrays fixed on the surfaces of primary sensory and limbic areas
of trained rabbits and cats. Functional brain imaging in relation to behavior
reveals the formation of coherent domains of synchronized neuronal oscillatory
activity and phase transitions predicted by the dissipative model.Comment: Restyled, slight changes in title and abstract, updated bibliography,
J. Phys. A: Math. Theor. Vol. 41 (2008) in prin
Moderation of antipsychotic-induced weight gain by energy balance gene variants in the RUPP autism network risperidone studies.
Second-generation antipsychotic exposure, in both children and adults, carries significant risk for excessive weight gain that varies widely across individuals. We queried common variation in key energy balance genes (FTO, MC4R, LEP, CNR1, FAAH) for their association with weight gain during the initial 8 weeks in the two NIMH Research Units on Pediatric Psychopharmacology Autism Network trials (N=225) of risperidone for treatment of irritability in children/adolescents aged 4-17 years with autism spectrum disorders. Variants in the cannabinoid receptor (CNR)-1 promoter (P=1.0 × 10(-6)), CNR1 (P=9.6 × 10(-5)) and the leptin (LEP) promoter (P=1.4 × 10(-4)) conferred robust-independent risks for weight gain. A model combining these three variants was highly significant (P=1.3 × 10(-9)) with a 0.85 effect size between lowest and highest risk groups. All results survived correction for multiple testing and were not dependent on dose, plasma level or ethnicity. We found no evidence for association with a reported functional variant in the endocannabinoid metabolic enzyme, fatty acid amide hydrolase, whereas body mass index-associated single-nucleotide polymorphisms in FTO and MC4R showed only trend associations. These data suggest a substantial genetic contribution of common variants in energy balance regulatory genes to individual antipsychotic-associated weight gain in children and adolescents, which supersedes findings from prior adult studies. The effects are robust enough to be detected after only 8 weeks and are more prominent in this largely treatment naive population. This study highlights compelling directions for further exploration of the pharmacogenetic basis of this concerning multifactorial adverse event
Quantum effects in linguistic endeavors
Classifying the information content of neural spike trains in a linguistic
endeavor, an uncertainty relation emerges between the bit size of a word and
its duration. This uncertainty is associated with the task of synchronizing the
spike trains of different duration representing different words. The
uncertainty involves peculiar quantum features, so that word comparison amounts
to measurement-based-quantum computation. Such a quantum behavior explains the
onset and decay of the memory window connecting successive pieces of a
linguistic text. The behavior here discussed is applicable to other reported
evidences of quantum effects in human linguistic processes, so far lacking a
plausible framework, since either no efforts to assign an appropriate quantum
constant had been associated or speculating on microscopic processes dependent
on Planck's constant resulted in unrealistic decoherence times
The role of the electromagnetic field in the formation of domains in the process of symmetry breaking phase transitions
In the framework of quantum field theory we discuss the emergence of a phase
locking among the electromagnetic modes and the matter components on an
extended space-time region. We discuss the formation of extended domains
exhibiting in their fundamental states non-vanishing order parameters, whose
existence is not included in the Lagrangian. Our discussion is motivated by the
interest in the study of the general problem of the stability of mesoscopic and
macroscopic complex systems arising from fluctuating quantum components in
connection with the problem of defect formation during the process of
non-equilibrium symmetry breaking phase transitions characterized by an order
parameter.Comment: Physical Review A, in the pres
Embracing Decay and Succumbing to Ones Enviornment
Mushrooms need death to grow. Mycology has always interested me, the way mushrooms are vital for the environment but require decay in order to thrive. Mushrooms have deep roots in psychedelic and magical lore. As a child, I remember carrying around a silver coin in my pocket in case I accidentally strolled into a fairy ring: a ring of mushrooms that act as a portal to the fairy realm, and if you enter one the only way out if to offer the fae a token for your freedom, otherwise you're stuck there forever. Naturally, curiosity overwhelmed fear and I always went looking for these circles trying to find the fairy realm. Even when I don't start with them, my work falls into these themes-- life from death and becoming consumed by one's environment.--Purchase College SUNYPainting and DrawingBachelor of Fine ArtsKreimer, Julia
Localized helium excitations in 4He_N-benzene clusters
We compute ground and excited state properties of small helium clusters 4He_N
containing a single benzene impurity molecule. Ground-state structures and
energies are obtained for N=1,2,3,14 from importance-sampled, rigid-body
diffusion Monte Carlo (DMC). Excited state energies due to helium vibrational
motion near the molecule surface are evaluated using the projection operator,
imaginary time spectral evolution (POITSE) method. We find excitation energies
of up to ~23 K above the ground state. These states all possess vibrational
character of helium atoms in a highly anisotropic potential due to the aromatic
molecule, and can be categorized in terms of localized and collective
vibrational modes. These results appear to provide precursors for a transition
from localized to collective helium excitations at molecular nanosubstrates of
increasing size. We discuss the implications of these results for analysis of
anomalous spectral features in recent spectroscopic studies of large aromatic
molecules in helium clusters.Comment: 15 pages, 5 figures, submitted to Phys. Rev.
- …
