Abstract

Classifying the information content of neural spike trains in a linguistic endeavor, an uncertainty relation emerges between the bit size of a word and its duration. This uncertainty is associated with the task of synchronizing the spike trains of different duration representing different words. The uncertainty involves peculiar quantum features, so that word comparison amounts to measurement-based-quantum computation. Such a quantum behavior explains the onset and decay of the memory window connecting successive pieces of a linguistic text. The behavior here discussed is applicable to other reported evidences of quantum effects in human linguistic processes, so far lacking a plausible framework, since either no efforts to assign an appropriate quantum constant had been associated or speculating on microscopic processes dependent on Planck's constant resulted in unrealistic decoherence times

    Similar works

    Full text

    thumbnail-image

    Available Versions