1,398 research outputs found

    Pioglitazone-Loaded PLGA Nanoparticles: Towards the Most Reliable Synthesis Method

    Get PDF
    Recent findings have proved the benefits of Pioglitazone (PGZ) against atherosclerosis and type 2 diabetes. Since the systematic and controllable release of this drug is of significant importance, encapsulation of this drug in nanoparticles (NPs) can minimize uncontrolled issues. In this context, drug delivery approaches based on several poly(lactic-co-glycolic acid) (PLGA) nanoparticles have been rising in popularity due to their promising capabilities. However, a fully reliable and reproducible synthetic methodology is still lacking. In this work, we present a rational optimization of the most critical formulation parameters for the production of PGZ-loaded PLGA NPs by the single emulsification-solvent evaporation or nanoprecipitation methods. We examined the influence of several variables (e.g., component concentrations, phases ratio, injection flux rate) on the synthesis of the PGZ-NPs. In addition, a comparison of these synthetic methodologies in terms of nanoparticle size, polydispersity index (PDI), zeta potential (ζp), drug loading (DL%), entrapment efficiency (EE%), and stability is offered. According to the higher entrapment efficiency content, enhanced storage time and suitable particle size, the nanoprecipitation approach appears to be the simplest, most rapid and most reliable synthetic pathway for these drug nanocarriers, and we demonstrated a very slow drug release in PBS for the best formulation obtained by this synthesis.Recent findings have proved the benefits of Pioglitazone (PGZ) against atherosclerosis and type 2 diabetes. Since the systematic and controllable release of this drug is of significant importance, encapsulation of this drug in nanoparticles (NPs) can minimize uncontrolled issues. In this context, drug delivery approaches based on several poly(lactic-co-glycolic acid) (PLGA) nanoparticles have been rising in popularity due to their promising capabilities. However, a fully reliable and reproducible synthetic methodology is still lacking. In this work, we present a rational optimization of the most critical formulation parameters for the production of PGZ-loaded PLGA NPs by the single emulsification-solvent evaporation or nanoprecipitation methods. We examined the influence of several variables (e.g., component concentrations, phases ratio, injection flux rate) on the synthesis of the PGZ-NPs. In addition, a comparison of these synthetic methodologies in terms of nanoparticle size, polydispersity index (PDI), zeta potential (ζp), drug loading (DL%), entrapment efficiency (EE%), and stability is offered. According to the higher entrapment efficiency content, enhanced storage time and suitable particle size, the nanoprecipitation approach appears to be the simplest, most rapid and most reliable synthetic pathway for these drug nanocarriers, and we demonstrated a very slow drug release in PBS for the best formulation obtained by this synthesis

    Laboratory Test Campaign Aimed at the Analysis of an Uncommon Wear Phenomenon in a Marble Quarry

    Get PDF
    The use of ornamental stones has a historical value that makes them strategically precious in Italy; marble can offer high performance in architectural applications, even though the variability of the rock mass requires detailed studies to optimize the exploitation techniques and reduce waste. Italy is world famous for its marble, which is extracted mainly through chainsaw cutting machines, which are currently used intensively due to their high‐safety working conditions compared to alternative techniques and for their great versatility, especially in underground applications. Although this cutting technique is well‐rooted, an uncommon problem of tool wear was found in the quarry under study, which strongly affected productivity. A series of laboratory test were carried out to estimate the wear potential of the rock and the suitability of the tools. The Cerchar abrasivity test highlighted a mean wear potential for the marble of 2.77, while microhardness outcomes pointed out the presence of quartz veins in the tested material (values over 10000 MPa). Finally, additives typically used in the conditioning process of EPB machines in tunneling were tested with the purpose of reducing the extent of wear. A reduction of about 50% in the wear (in terms of weight lost) was obtained for a moisture content of 9%

    Autophagy: Friend or Foe in Breast Cancer Development, Progression, and Treatment

    Get PDF
    Autophagy is a catabolic process responsible for the degradation and recycling of long-lived proteins and organelles by lysosomes. This degradative pathway sustains cell survival during nutrient deprivation, but in some circumstances, autophagy leads to cell death. Thereby, autophagy can serve as tumor suppressor, as the reduction in autophagic capacity causes malignant transformation and spontaneous tumors. On the other hand, this process also functions as a protective cell-survival mechanism against environmental stress causing resistance to antineoplastic therapies. Although autophagy inhibition, combined with anticancer agents, could be therapeutically beneficial in some cases, autophagy induction by itself could lead to cell death in some apoptosis-resistant cancers, indicating that autophagy induction may also be used as a therapy. This paper summarizes the most important findings described in the literature about autophagy and also discusses the importance of this process in clinical settings

    Multifunctional Glycoconjugates for Recruiting Natural Antibodies against Cancer Cells

    Get PDF
    Invited for the cover of this issue is Olivier Renaudet and co-workers at the Université Grenoble Alpes and funded by the European Research Council (CoG “LEGO′” no. 647938). The image illustrates a synthetic chemist playing with supramolecular structures to kill cancer cells by using natural antibodies present in the blood stream. Read the full text of the article at 10.1002/chem.201903327

    Amaranthus grain as a new ingredient in diets for dairy cows: productive, qualitative, and in vitro fermentation traits

    Get PDF
    BACKGROUND: In recent decades, grain amaranths have attracted attention due to their valuable combination of nutritional traits, with higher protein and oil content than conventional cereals. Before they can be proposed as an unconventional ingredient in animal feed, many aspects still need to be investigated from field production to nutritive value. The present research aimed to study the agronomic traits, proximate composition, and digestibility/degradability, fatty acid profile, antioxidant activity, and total phenolic content of two grain amaranth species, Amaranthus cruentus and Amaranthus hypochondriacus (for a total of six accessions), grown in a Mediterranean environment. RESULTS: Both species showed seed yields comparable to or higher than the traditional cereal crops in the same environment. On the whole, A. cruentus resulted in a higher seed production than A. hypochondriacus. Mexico and Montana accessions, both belonging to A. cruentus, showed the highest yield (3.73 t ha−1, on average). Few differences emerged in nutritive value between species and accessions: the Illinois accession of A. cruentus showed the best performance in terms of in vitro degradability and gas production, but not for volatile fatty acid production; the fermentation kinetics was slowest in the Illinois accession and fastest in the Montana accession of A. cruentus and the India accession of A. hypochondriacus. CONCLUSION: From a health perspective, the Nebraska accession of A. hypochondriacus represents the best accession, with the lowest saturated fatty acid content and the highest polyunsaturated fatty acid content. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    In situ remediation of contaminated marinesediment: an overview

    Get PDF
    Sediment tends to accumulate inorganic and persistent hydrophobic organic contaminants representing one of the main sinks and sources of pollution. Generally, contaminated sediment poses medium- and long-term risks to humans and ecosystem health; dredging activities or natural resuspension phenomena (i.e., strongly adverse weather conditions) can remobilize pollution releasing it into the water column. Thus, ex situ traditional remediation activities (i.e., dredging) can be hazardous compared to in situ techniques that try to keep to a minimum sediment mobilization, unless dredging is compulsory to reach a desired bathymetric level. We reviewed in situ physico-chemical (i.e., active mixing and thin capping, solidification/stabilization, chemical oxidation, dechlorination, electrokinetic separation, and sediment flushing) and bio-assisted treatments, including hybrid solutions (i.e., nanocomposite reactive capping, bioreactive capping, microbial electrochemical technologies). We found that significant gaps still remain into the knowledge about the application of in situ contaminated sediment remediation techniques from the technical and the practical viewpoint. Only activated carbon-based technologies are well developed and currently applied with several available case studies. The environmental implication of in situ remediation technologies was only shortly investigated on a long-term basis after its application, so it is not clear how they can really perform

    The remittances behaviour of the second generation in Europe: altruism or self-interest?

    Get PDF
    Whereas most research on remittances focuses on first-generation migrants, the aim of this paper is to investigate the remitting behaviour of the host country-born children of migrants - the second generation - in various European cities. Some important studies found that migrant transnationalism is not only a phenomenon for the first generation, but also apply to the second and higher generations, through, among other things, family visits, elder care, and remittances. At the same time, the maintenance of a strong ethnic identity in the ‘host’ society does not necessarily mean that second-generation migrants have strong transnational ties to their ‘home’ country. The data used in this paper is from “The Integration of the European Second Generation” (TIES) project. The survey collected information on approximately 6,250 individuals aged 18-35 with at least one migrant parent from Morocco, Turkey or former Yugoslavia, in 15 European cities, regrouped in 8 ‘countries’. For the purpose of this paper, only analyses for Austria (Linz and Vienna); Switzerland (Basle and Zurich); Germany (Berlin and Frankfurt); France (Paris and Strasbourg); the Netherlands (Amsterdam and Rotterdam); Spain (Barcelona and Madrid); and Sweden (Stockholm) will be presented.

    Microbial Ecology of Pecorino Siciliano PDO Cheese Production Systems

    Get PDF
    Pecorino Siciliano PDO is a semi-hard cheese that is produced in wooden vats using raw sheep's milk and its associated autochthonous microbial community. In the present study, we evaluated the microbial ecology of the milk, curd and whey from five Pecorino Siciliano PDO-producing farms in Sicily using a combination of metagenomic and microbiological approaches. We present an overview of the species and strain-level diversity of dairy lactococcal and streptococcal isolates using established genotyping tools and compare the lactic acid bacterial populations present in samples from these farms. Whole genome sequences of representative isolates of Lactococcus spp. and Streptococcus thermophilus were elucidated and the genetic diversity of the strains was established through analysis of predicted phage-resistance systems and prophage-associated regions. The analysis revealed farm-specific dairy lactococcal and streptococcal isolates that possess diverse genotypic features including newly described phage-resistance systems

    The most common laboratory procedures for the evaluation of EPB TBMs excavated material ecotoxicity in Italy: A review

    Get PDF
    The rapid development of the mechanized tunneling in current decades has raised serious concerns about the environmental impact of large quantities of the muck. EPB-TBMs require the use of foaming agents for optimizing the soil conditioning.These agents could contain some chemicals (e.g., sodium lauryl ether sulfate – SLES) that are not included in the current legislation at the Italian or EU level. In order to minimize the project costs, it is useful to re-use the excavated soil as a reusable by-product that requires that it does not have any environmental impact on the ecosystems. For this purpose, to draw up a site-specific protocol is a practical and successful tool to evaluate the environmental compatibility of excavated soil during the tunneling. It can rely on one-month experiments at a microcosm or mesocosm scale using soil coming from the excavated site.At fixed times (from 0 to 28 days) the chemical degradation of the chemical together with ecotoxicological tests can be performed on soil or soil-water extracts. Both aquatic and terrestrial organisms are used and the choice of the tests depends on the final destination site.The results of the residual concentration of SLES in soil and in the elutriates, together with those of the ecotoxicological tests, make it possible to evaluate the temporary storage of spoil material and the time necessary for obtaining a safe soil debris to be used as a by-product.These data are usually included in the site-specific protocol to be applied during the excavation phase.This paper describes the main methodological aspects regarding microcosm experiments

    Improvement of oxidative status, milk and cheese production, and food sustainability indexes by addition of durum wheat bran to dairy cows’ diet

    Get PDF
    Simple Summary In the near future, the expected increase in world population will enhance feed versus food competition between animals and humans to face the increasing demand by humans. For this reason, it is of paramount importance to feed ruminants with sources alternative to those representing themselves foods for humans. Durum wheat bran (DWB), similar to other by-products of the agri-food industry, can meet this need, its fiber content is high and represents also a remarkable source of phenolic acids, especially ferulic acid. This compound exerts antioxidant properties improving the health status of animals, and allows the production of functional foods more and more requested by consumers. Accordingly, this experiment demonstrated the suitability of using DWB for dairy cows feeding, because it led to clear advantages in terms of oxidative status of animals, quality of dairy products, and feeding costs. Furthermore, DWB improved the human-edible feed conversion efficiency reducing the use of human-edible feed. Durum wheat bran (DWB) is a by-product mostly used in feeding ruminants, contributing to decrease in the utilization of feeds suitable as foods for human consumption, thus improving the sustainability of livestock production. However, the potential benefits of DWB, due to its content in phenolic acids, mainly consisting of ferulic acid with antioxidant properties, have not been well clarified yet. Accordingly, in this experiment, 36 lactating cows divided into three groups received, over a period of 100 days, one of three concentrates including DWB at 0% (DWB0), 10% (DWB10), or 20% (DWB20). The concentrates were formulated to be isoproteic and isoenergetic and, to balance the higher fiber content of the concentrates with DWB, the hay in the diets was slightly reduced. During the trial, the group feed intake and the individual milk production were monitored, and cheese was made with bulk milk from each group. Milk yield and microbiological characteristics of milk and cheese were similar among groups, indicating no DWB effect on cows performance and fermentation process. Milk from DWB20 group resulted slightly higher in casein and curd firmness (a(2r)). In cows fed DWB, the higher polyphenol intake was responsible for higher blood contents of these bioactive compounds, that seemed to have contributed in reducing the level of reactive oxygen metabolites (ROMs), which were higher in DWB0 cows. DWB20 cheeses showed a higher polyphenol content, lower number of peroxides, and higher antioxidant capacity than DWB0 cheeses. DWB20 and DWB10 diets resulted less expensive. In addition, the DWB20 group showed the best indexes heFCE (human edible feed conversion efficiency = milk/human edible feed) and NFP (net food production = milk - human edible food), expressed as crude protein or gross energy. In conclusion, the DWB fed to dairy cows at 12% of diet dry matter (DM) can lead to benefits, such as the improvement of oxidative status of cows, milk quality, shelf-life, and functional properties of cheese, and might contribute to reduce the feeding cost and limit the human-animal competition for feeding sources
    corecore