9,820 research outputs found
High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene.
Chromosome 17q11-q21 is a region of the genome likely to harbor susceptibility to autism (MIM(209850)) based on earlier evidence of linkage to the disorder. This linkage is specific to multiplex pedigrees containing only male probands (MO) within the Autism Genetic Resource Exchange (AGRE). Earlier, Stone et al.(1) completed a high-density single nucleotide polymorphism association study of 13.7 Mb within this interval, but common variant association was not sufficient to account for the linkage signal. Here, we extend this single nucleotide polymorphism-based association study to complete the coverage of the two-LOD support interval around the chromosome 17q linkage peak by testing the majority of common alleles in 284 MO trios. Markers within an interval containing the gene, CACNA1G, were found to be associated with Autism Spectrum Disorder at a locally significant level (P=1.9 × 10(-5)). While establishing CACNA1G as a novel candidate gene for autism, these alleles do not contribute a sufficient genetic effect to explain the observed linkage, indicating that there is substantial genetic heterogeneity despite the clear linkage signal. The region thus likely harbors a combination of multiple common and rare alleles contributing to the genetic risk. These data, along with earlier studies of chromosomes 5 and 7q3, suggest few if any major common risk alleles account for Autism Spectrum Disorder risk under major linkage peaks in the AGRE sample. This provides important evidence for strategies to identify Autism Spectrum Disorder genes, suggesting that they should focus on identifying rare variants and common variants of small effect
NASA research in supersonic propulsion: A decade of progress
A second generation, economically viable, and environmentally acceptable supersonic aircraft is reviewed. Engine selection, testbed experiments, and noise reduction research are described
Emerging technologies for sustainable irrigation: Selected papers from the 2015 ASABE and IA irrigation symposium
Citation: Lamm, F. R., Stone, K. C., Dukes, M. D., Howell, T. A., Sr., Robbins, J. W. D., Jr., & Mecham, B. Q. (2016). Emerging technologies for sustainable irrigation: Selected papers from the 2015 ASABE and IA irrigation symposium. Transactions of the Asabe, 59(1), 155-161. doi:10.13031/trans.59.11706This article is an introduction to the "Emerging Technologies in Sustainable Irrigation: A Tribute to the Career of Terry Howell, Sr." Special Collection in this issue of Transactions of the ASABE and the next issue of Applied Engineering in Agriculture, consisting of 16 articles selected from 62 papers and presentations at the joint irrigation symposium of ASABE and the Irrigation Association (IA), which was held in November 2015 in Long Beach, California. The joint cooperation on irrigation symposia between ASABE and IA can be traced back to 1970, and this time period roughly coincides with the career of Dr. Howell. The cooperative symposia have offered an important venue for discussion of emerging technologies that can lead to sustainable irrigation. This most recent symposium is another point on the continuum. The articles in this Special Collection address three major topic areas: evapotranspiration measurement and determination, irrigation systems and their associated technologies, and irrigation scheduling and water management. While these 16 articles are not inclusive of all the important advances in irrigation since 1970, they illustrate that continued progress occurs by combining a recognition of the current status with the postulation of new ideas to advance our understanding of irrigation engineering and science. The global food and water challenges will require continued progress from our portion of the scientific community. This article serves to introduce and provide a brief summary of the Special Collection. © 2016 American Society of Agricultural and Biological Engineers
Stress in nurses : stress-related affect and its determinants examined over the nursing day
Peer reviewedPostprin
Clinical and genetic analysis of 29 Brazilian patients with Huntington’s disease-like phenotype
Huntington’s disease (HD) is a neurodegenerative disorder characterized by chorea,
behavioral disturbances and dementia, caused by a pathological expansion of the CAG
trinucleotide in the HTT gene. Several patients have been recognized with the typical HD
phenotype without the expected mutation. The objective of this study was to assess the
occurrence of diseases such as Huntington’s disease-like 2 (HDL2), spinocerebellar ataxia
(SCA) 1, SCA2, SCA3, SCA7, dentatorubral-pallidoluysian atrophy (DRPLA) and choreaacanthocytosis
(ChAc) among 29 Brazilian patients with a HD-like phenotype. In the group
analyzed, we found 3 patients with HDL2 and 2 patients with ChAc. The diagnosis was not
reached in 79.3% of the patients. HDL2 was the main cause of the HD-like phenotype in
the group analyzed, and is attributable to the African ancestry of this population. However,
the etiology of the disease remains undetermined in the majority of the HD negative
patients with HD-like phenotype.
Key words: Huntington’s disease, Huntington’s disease-like, chorea-acanthocytosis,
Huntington’s disease-like 2
Supersonic aerodynamic characteristics associated with variations in the geometry of the forward portion of irregular planform wings
The experimental longitudinal and lateral-directional stability characteristics of a Langley conceptual space shuttle orbiter design have been obtained for a series of inboard planform fillets in a unitary plan wind tunnel. Fillet sweep angles up to 78 deg were investigated while holding the spanwise intersection of the fillet and wing constant. The data were obtained at Mach numbers of 2.36 to 4.63 and at Reynolds numbers (depending on Mach number) of 1.5 million to 2.5 million per foot. The angle of attack was varied from about minus 2 deg to 44 deg at 0 deg and 3 deg of sideslip
SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods
In the last few years thousands of scientific papers have investigated
sentiment analysis, several startups that measure opinions on real data have
emerged and a number of innovative products related to this theme have been
developed. There are multiple methods for measuring sentiments, including
lexical-based and supervised machine learning methods. Despite the vast
interest on the theme and wide popularity of some methods, it is unclear which
one is better for identifying the polarity (i.e., positive or negative) of a
message. Accordingly, there is a strong need to conduct a thorough
apple-to-apple comparison of sentiment analysis methods, \textit{as they are
used in practice}, across multiple datasets originated from different data
sources. Such a comparison is key for understanding the potential limitations,
advantages, and disadvantages of popular methods. This article aims at filling
this gap by presenting a benchmark comparison of twenty-four popular sentiment
analysis methods (which we call the state-of-the-practice methods). Our
evaluation is based on a benchmark of eighteen labeled datasets, covering
messages posted on social networks, movie and product reviews, as well as
opinions and comments in news articles. Our results highlight the extent to
which the prediction performance of these methods varies considerably across
datasets. Aiming at boosting the development of this research area, we open the
methods' codes and datasets used in this article, deploying them in a benchmark
system, which provides an open API for accessing and comparing sentence-level
sentiment analysis methods
Water dispersible microbicidal cellulose acetate phthalate film
BACKGROUND: Cellulose acetate phthalate (CAP) has been used for several decades in the pharmaceutical industry for enteric film coating of oral tablets and capsules. Micronized CAP, available commercially as "Aquateric" and containing additional ingredients required for micronization, used for tablet coating from water dispersions, was shown to adsorb and inactivate the human immunodeficiency virus (HIV-1), herpesviruses (HSV) and other sexually transmitted disease (STD) pathogens. Earlier studies indicate that a gel formulation of micronized CAP has a potential as a topical microbicide for prevention of STDs including the acquired immunodeficiency syndrome (AIDS). The objective of endeavors described here was to develop a water dispersible CAP film amenable to inexpensive industrial mass production. METHODS: CAP and hydroxypropyl cellulose (HPC) were dissolved in different organic solvent mixtures, poured into dishes, and the solvents evaporated. Graded quantities of a resulting selected film were mixed for 5 min at 37°C with HIV-1, HSV and other STD pathogens, respectively. Residual infectivity of the treated viruses and bacteria was determined. RESULTS: The prerequisites for producing CAP films which are soft, flexible and dispersible in water, resulting in smooth gels, are combining CAP with HPC (other cellulose derivatives are unsuitable), and casting from organic solvent mixtures containing ≈50 to ≈65% ethanol (EtOH). The films are ≈100 µ thick and have a textured surface with alternating protrusions and depressions revealed by scanning electron microscopy. The films, before complete conversion into a gel, rapidly inactivated HIV-1 and HSV and reduced the infectivity of non-viral STD pathogens >1,000-fold. CONCLUSIONS: Soft pliable CAP-HPC composite films can be generated by casting from organic solvent mixtures containing EtOH. The films rapidly reduce the infectivity of several STD pathogens, including HIV-1. They are converted into gels and thus do not have to be removed following application and use. In addition to their potential as topical microbicides, the films have promise for mucosal delivery of pharmaceuticals other than CAP
- …
