232 research outputs found

    Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm

    Get PDF
    KEY MESSAGE: Loci conferring resistance to the highly virulent African stem rust race TTKSK were identified in advanced barley breeding germplasm and positioned to chromosomes 5H and 7H using an association mapping approach. ABSTRACT: African races of the stem rust pathogen (Puccinia graminis f. sp. tritici) are a serious threat to barley production worldwide because of their wide virulence. To discover and characterize resistance to African stem rust race TTKSK in US barley breeding germplasm, over 3,000 lines/cultivars were assessed for resistance at the seedling stage in the greenhouse and also the adult plant stage in the field in Kenya. Only 12 (0.3 %) and 64 (2.1 %) lines exhibited a resistance level comparable to the resistant control at the seedling and adult plant stage, respectively. To map quantitative trait loci (QTL) for resistance to race TTKSK, an association mapping approach was conducted, utilizing 3,072 single nucleotide polymorphism (SNP) markers. At the seedling stage, two neighboring SNP markers (0.8 cM apart) on chromosome 7H (11_21491 and 12_30528) were found significantly associated with resistance. The most significant one found was 12_30528; thus, the resistance QTL was named Rpg-qtl-7H-12_30528. At the adult plant stage, two SNP markers on chromosome 5H (11_11355 and 12_31427) were found significantly associated with resistance. This resistance QTL was named Rpg-qtl-5H-11_11355 for the most significant marker identified. Adult plant resistance is of paramount importance for stem rust. The marker associated with Rpg-qtl-5H-11_11355 for adult plant resistance explained only a small portion of the phenotypic variation (0.02); however, this QTL reduced disease severity up to 55.0 % under low disease pressure and up to 21.1 % under heavy disease pressure. SNP marker 11_11355 will be valuable for marker-assisted selection of adult plant stem rust resistance in barley breeding. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-014-2297-8) contains supplementary material, which is available to authorized users

    A simple and sensitive silver-staining method for detecting AFLP markers in fungi

    Get PDF
    A simple and fast silver-staining method is described for detecting amplified fragment length polymorphism (AFLP) markers separated in denaturing polyacrylamide gels. The silver-staining method produced a good degree of resolution and sensitivity and could be widely applicable in AFLP analyses of fungi

    Agronomic Characteristics, Malt Quality, and Disease Resistance of Barley Germplasm Lines with Partial Fusarium Head Blight Resistance

    Get PDF
    Fusarium head blight (FHB), incited by Fusarium graminearum Schwabe, has caused devastating losses in both yield and quality of barley (Hordeum vulgare L.) produced in the northern Great Plains from 1993 to 2003. Thirty-five barley germplasmlines with partial resistance to FHB have been identified in exotic and unadapted germplasm lines. Little is known about their agronomic characteristics, malt quality, and reaction to other diseases as compared to adapted cultivars. This information is needed so barley breeders can make informed decisions when planning crosses involving the resistant germplasm lines. The objective of this study was to compare the agronomic performance, malt quality, and disease reaction of barley germplasm lines with partial FHB resistance to cultivars grown in the northern Great Plains. Agronomic and malting data were collected on the 35 germplasm lines and five check cultivars grown in five environments in North Dakota from 1998 to 2000. Data for FHB severity and deoxynivalenol (DON, a mycotoxin produced by F. graminearum) accumulation were obtained for the same 40 entries grown in FHB-epidemic nurseries in North Dakota from 1997 to 1999. Seedling responses to foliar pathogens common in the northern Great Plains were determined in the greenhouse during fall 1997. None of the FHB-resistant barley germplasm lines had acceptable malt quality for all traits. Kernel plumpness, grain protein concentration, and malt extract were the traits impacted most severely. The FHB-resistant barley germplasm lines headed significantly later than the adapted barley cultivars. Most FHB-resistant germplasm lines were susceptible to the common foliar diseases of the northern Great Plains. At least four cycles of breeding will probably be necessary to develop FHB-resistant germplasm lines acceptable to producers and the malting and brewing industry

    Heritability of Fusarium Head Blight Resistance and Deoxynivalenol Accumulation from Barley Accession CIho 4196

    Get PDF
    Fusarium head blight (FHB), incited by Fusarium graminearum Schwabe [telomorph Gibberella zea (Schwein)], has caused devastating losses to yield and quality of barley (Hordeum vulgare L.) produced in the upper U.S. Midwest from 1993 to 2000. Design of an efficient breeding strategy for developing FHB resistant cultivars is dependent on knowing (i) the heritability of FHB resistance and accumulation of deoxynivalenol (DON), a mycotoxin contaminant produced by F. graminearum and (ii) the correlated response of other traits during selection for reduced FHB. We conducted field studies in FHB disease nurseries using F4:5 and F4:6 families from the cross between the FHB susceptible six-rowed cultivar Foster and the resistant two-rowed accession CIho 4196 to gain knowledge in the areas listed above. Heritability of FHB severity and DON accumulation was 0.65 and 0.46, respectively. A moderately strong positive association between FHB severity and DON accumulation was observed (r = 0.62). FHB severity and DON accumulation were negatively associated with plant height, days to heading, spike angle, and spike density. The selection differentials calculated between the top F4:6 families selected for low FHB severity and the unselected F4:5 families were moderately high for FHB severity, DON accumulation, and days to heading. Less than 14% of the selected lines had six-rowed spikes. No difference in plant height was observed between the selected and unselected families. Thus, development of FHB resistant lines with acceptable DON accumulation and days to heading is obtainable. However, because no lines were as short as Foster, development of FHB resistant plants with acceptable plant height from a cross using CIho 4196 as a parent will be difficult

    QTL Mapping of Stem Rust Resistance in Populations of Durum Wheat

    Get PDF
    Stem rinfectionust, caused by the fungus Puccinia graminis f. sp. tritici (Pgt), is one of the most devastating fungal diseases of durum and common wheat worldwide. The identification of sources of resistance and the validation of QTLs identified through genome-wide association studies is of paramount importance for reducing the losses caused by this disease to wheat grain yield and quality. Four segregating populations whose parents showed contrasting reactions to some Pgt races were assessed in the present study, and 14 QTLs were identified on chromosomes 3A, 4A, 6A, and 6B, with some regions in common between different segregating populations. Several QTLs were mapped to chromosomal regions coincident with previously mapped stem rust resistance loci; however, their reaction to different Pgt races suggest that novel genes or alleles could be present on chromosomes 3A and 6B. Putative candidate genes with a disease-related functional annotation have been identified in the QTL regions based on information available from the reference genome of durum cv. 'Svevo'

    Genetic Diversity and Ecological Niche Modelling of Wild Barley:Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?

    Get PDF
    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security

    Agronomic characteristics, malt quality, and disease resistance of barley germplasm lines with partial Fusarium head blight resistance

    Get PDF
    Fusarium head blight (FHB), incited by Fusarium graminearum Schwabe, has caused devastating losses in both yield and quality of barley (Hordeum vulgare L.) produced in the northern Great Plains from 1993 to 2003. Thirty-five barley germplasm lines with partial resistance to FHB have been identified in exotic and unadapted germplasm lines. Little is known about their agronomic characteristics, malt quality, and reaction to other diseases as compared to adapted cultivars. This information is needed so barley breeders can make informed decisions when planning crosses involving the resistant germplasm lines. The objective of this study was to compare the agronomic performance, malt quality, and disease reaction of barley germplasm lines with partial FHB resistance to cultivars grown in the northern Great Plains. Agronomic and malting data were collected on the 35 germplasm lines and five check cultivars grown in five environments in North Dakota from 1998 to 2000. Data for FHB severity and deoxynivalenol (DON, a mycotoxin produced by F. graminearum) accumulation were obtained for the same 40 entries grown in FHB-epidemic nurseries in North Dakota from 1997 to 1999. Seedling responses to foliar pathogens common in the northern Great Plains were determined in the greenhouse during fall 1997. None of the FHB-resistant barley germplasm lines had acceptable malt quality for all traits. Kernel plumpness, grain protein concentration, and malt extract were the traits impacted most severely. The FHB-resistant barley germplasm lines headed significantly later than the adapted barley cultivars. Most FHB-resistant germplasm lines were susceptible to the common foliar diseases of the northern Great Plains. At least four cycles of breeding will probably be necessary to develop FHB-resistant germplasm lines acceptable to producers and the malting and brewing industry

    Identification of QTLs Associated with Fusarium Head Blight Resistance in Barley Accession CIho 4196

    Get PDF
    Fusarium head blight (FHB), incited by Fusarium graminearum Schwabe [teleomorph Gibberella zea (Schwein)], reduces quality of harvested barley (Hordeum vulgare L.) because of blighted kernels and the presence of deoxynivalenol (DON), a mycotoxin produced by the pathogen. CIho 4196, a two-rowed type, is one of the most resistant accessions known in barley; however, it possesses many undesirable agronomic traits. To better understand the genetics of reduced FHB severity and DON accumulation conferred by CIho 4196, a genetic map was generated using a population of recombinant inbred lines derived from a cross between Foster (a six-rowed malting cultivar) and CIho 4196. Quantitative trait loci (QTL) analyses were performed using data obtained from 10 field environments. The possible associations of resistance QTLs and various agronomic and morphological traits in barley also were investigated. The centromeric region of chromosome 2H flanked by the markers ABG461C and MWG882A (bins 6–10) likely (P\u3c0.001) contains two QTLs contributing to lower FHB severity and plant height, and one QTL each for DON accumulation, days to heading, and rachis node number. The QTL for low FHB severity in the bin 8 region explained from 3 to 9% of the variation, while the QTL in the bin 10 region explained from 17 to 60% of the variation. A QTL for DON accumulation that explained 9 to 14% of the variation was found in the bin 2 region of chromosome 4H. This may represent a new QTL not present in other FHB resistant sources. Resistance QTLs in the bin 8 region and bin 10 region of chromosome 2HL were provisionally designated Qrgz-2H-8 and Qrgz-2H-10, respectively. The QTL for DON accumulation in chromosome 4H was provisionally named QDON-4H-2

    Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis

    Get PDF
    Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goat grass species Aegilops sharonesis (Sharon goatgrass) as a substantial reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (one of the Ug99 lineage races), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors

    Exercise Blocks Ethanol-Induced Kappa Opioid Receptor Sensitization in Nucleus Accumbens and Ventral Tegmental Area

    Get PDF
    Exercise has been increasingly used as an adjunctive therapy in the treatment of alcohol use disorder (AUD). Despite this, the mechanism by which it influences the mesolimbic circuitry changes underlying alcohol addiction is not well understood. Previous studies have shown alcohol dependence to lead to upregulation of the Dynorphin-Kappa Opioid Receptor (KOR) system, making it a potential target for therapeutics. Thus, gaining a better understanding of these pathways will help develop evidence-based guidelines for integrating exercise into therapies for the treatment of AUD
    corecore