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Genetic Diversity and Ecological Niche Modelling of Wild
Barley: Refugia, Large-Scale Post-LGM Range Expansion
and Limited Mid-Future Climate Threats?
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Abstract

Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in
the context of current, past and potential future climates is important for conservation and for breeding the domesticated
crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24
nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared
with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future
(anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia
and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses
support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic
areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors
could play an important role in tailoring conservation and crop improvement strategies to support future human food
security.
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Introduction

Ecological niche modelling of the distributions of crop wild

relatives in present, past and future climates can provide important

insights into the past evolution and future trajectories of crop

progenitors and domesticates [1]. Non-overlaps between current

and predicted future distributions may reveal populations at

particular threat from anthropogenic climate change [2]. At the

same time, it has been suggested that overlaps between modelled

past and present distributions may indicate refugial areas rich in

genetic diversity, although this is a theory that requires wider

validation [3–5]. In both instances, distributional differences may

indicate wild genetic resources of particular importance for

conservation and for breeding of the domesticated crop, in order

to respond to new environmental pressures [6].

Wild barley (Hordeum vulgare ssp. spontaneum), the progenitor of

the agriculturally important domesticated H. vulgare ssp. vulgare [7],

provides an excellent opportunity to explore the utility of

ecological niche modelling for supporting conservation and use.

One reason is that its extensive natural distribution, which covers a

range of environments across the Fertile Crescent and Central

Asia [8], has been widely sampled for seed. This seed has been

made available for genotyping and is an important resource for

characterising genetic variation, to assist the cultivated crop to

respond to anthropogenic climate change and other production

challenges [9,10]. Another reason for wild barley’s utility is that a

wide range of molecular tools are available to describe genetic

diversity. These tools include single nucleotide polymorphisms

(SNPs [11]), nuclear simple sequence repeats (nSSRs [12]) and

chloroplast simple sequence repeats (cpSSRs [13]) that were

developed initially for studying cultivated barley, but can also be

used to characterise the wild resource. If centres of diversity in wild

barley (as described by these tools) are spatially coincident with

habitat common to past and present modelled distributions, then

this would support the utility of niche modelling for locating

genetic refugia. On the other hand, if centres of maximum

variation are outside areas of common past-present habitat, then

the utility of niche modelling for locating genetic diversity would

be weakened.

In this paper, we explore this issue by combining ecological

niche modelling, based on the MaxEnt procedure [14], with a

spatial analysis of SNP, nSSR and cpSSR data sets, using various

geographic information systems [15,16,17]. Our intention is to

build a greater understanding of the impacts of climate change on

wild barley, and to provide information to help manage natural

stands better in the context of environmental change. In turn, this

will support breeding to adapt the domesticated barley crop to

future climate. Our analysis is based on a range-wide, fully geo-

referenced collection of 256 wild barley accessions sampled from

19 countries, and involves distribution modelling under three

conditions: current climate, climate at the Last Glacial Maximum

(the LGM) and future climate for the 2080s under anthropogenic
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scenario A2. We begin to explore the possible utility of linkage

disequilibrium analysis for discriminating between alternative

hypotheses for describing and explaining spatial genetic structure,

and discuss the merits and limitations of the methods we employ.

An approach similar to that described in this paper could be used

to improve the management of other progenitors of domesticated

cereals originating in the Fertile Crescent and Central Asia. This is

important for supporting future global human food security in the

context of anthropogenic climate change [18].

Materials and Methods

The Wild Barley Collection
The Wild Barley Diversity Collection (WBDC) is the most

comprehensive geo-referenced collection of H. vulgare ssp.

spontaneum currently subject to wide characterisation [19]. Our

sampling of 256 individuals from the WBDC included 19

countries and was designed to cover as much of the accepted

natural distribution of the taxon as possible [8]. Sampling

extended from North Africa through the Fertile Crescent into

Central Asia (Fig. 1 and Table S1). Sampling did not include

Tibet, where wild barley very different from that to the west is

found [20,21], as very few geo-referenced samples (as required for

ecological niche modelling purposes) are available from there.

Most accessions originated from the International Center for

Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria,

and were assembled by the former gene bank curator there, Dr Jan

Valkoun. The majority of accessions were sampled from the wild

in the fifty-year period 1953 to 2002, especially in the ten-year

periods of 1983 to 1992 and 1993 to 2002 (79 and 101 accessions,

respectively). These collection periods correspond well with when

the weather station data that are used to support the interpolation

of bioclimatic variables for ecological niche modelling were

obtained (see below, [22]). For some accessions with early

collection dates, latitudes and longitudes used in the current study

are based on the interpretation of passport site-description data

rather than actual given GPS coordinates. These accessions are

therefore likely to be less precisely located.

Assembling Molecular Marker Data Sets
Three molecular marker data sets were analysed in the current

study. First, SNP data derived from two Illumina barley

oligonucleotide pool assay platforms were used (see [11,23] for a

description of these platforms, referred to as BOPAs 1 and 2 or

collectively as BOPA SNPs). Here, a subset of 2,505 mostly

chromosome-position-mapped BOPA SNPs from an existing study

on the WBDC ([24], to investigate disease resistance traits) was

used. ‘Ascertainment bias’ can confound the interpretation of

BOPA SNP results when comparing domesticated and wild barley

genetic resources [25]. In the current study, however, which only

involved comparing different portions of wild barley’s range, no

significant confounding effect is expected (see discussion in the

study by Russell et al. [26], which compared landrace and wild

barleys in the Fertile Crescent using BOPA SNPs). Second, we

characterised variation de novo at 24 of the barley nSSR loci

described by Ramsay et al. [12], using the methods given there.

Third, we determined variation de novo at five of the cpSSR loci

designed for Hordeum by Provan et al. [13], using the methods of

Comadran et al. [27]. A list of all 2,534 loci used in the current

study is given in Table S1.

Analysing Molecular Marker Data
Spatial autocorrelation analysis. Spatial autocorrelation

analysis using SPAGeDi [28] was undertaken to assess the

relationship between inter-individual genetic identities of the 256

tested wild barley accessions and geographic distances. Separate

analyses were carried out for BOPA SNPs, nSSRs and cpSSRs.

Ritland’s [29] kinship coefficient was employed to quantify

average pairwise genetic identity based on 20 geographic distance

classes of equal sample size. Whether or not individual kinship

values were different from expectations (under a random spatial

distribution of genetic variation) was assessed by a randomisation

test with 1,000 permutations. Kinship values were regressed

against the natural logarithm of distance classes to estimate the

overall extent of spatial genetic structure. The significance of the

regression slope was determined by 1,000 random permutations of

locations.

STRUCTURE analysis. STRUCTURE analysis was not

designed for predominantly inbreeding species such as barley, but

it has been widely applied to cultivated and wild barley

populations to reveal interesting genetic features (see discussion

in [26]). Here, BOPA SNP and nSSR data sets were each analysed

with STRUCTURE 2.2 [30] to assign accessions to one of K

groups for different values of K. Each analysis was based on 25,000

‘burn-in’ replications and a further 25,000 Markov chain Monte

Carlo steps (initial trial runs indicated that these numbers of

replications were sufficient to ensure the convergence of key

parameters). After trial runs, K was set at five because log Pr(X/K)

values in STRUCTURE had started to plateau at this point [30].

(Note that for our purposes it is more important to capture the

major genetic divisions within data sets than to determine an

‘absolute’ value for K.) The ‘no admixture’ model in STRUC-

TURE was used to assign single states to individuals. Other

analysis options were kept at default settings. STRUCTURE was

run five times for each data set and the most common group

assignments used as the basis for the interpretation of results (most

accessions placed in the same groups in separate runs).

Circular neighbourhood analysis. To overlay genetic

diversity onto geographic maps we employed DIVA-GIS 7.3

[15] (www.diva-gis.org) and ArcGIS 10 [16] (www.esri.com/

software/arcgis/). Two approaches were used, the first based on

allelic (or haplotype) richness and the second based on K

groupings. In the first, allelic (BOPA SNP and nSSR) and

haplotype (cpSSR) richness estimates were calculated for groups of

accessions. Groups were circumscribed using a circular neighbour-

hood diameter of four degrees and a grid size of 30 minutes

(method described in [6]). This allowed us to capture sufficient

collection sites within neighbourhoods to estimate genetic

parameters with some confidence. To account for varying

sampling intensity in geographic space, which otherwise affects

diversity estimates [31], rarefaction to a sample size of 10

individuals in neighbourhoods was undertaken using ADZE

[17]. In the second approach, K groupings (K = 5) revealed by

STRUCTURE for BOPA SNPs and nSSRs were used instead of

allelic/haplotype richness estimates, in order to reveal genetic

differentiation at a local geographic scale. Apart from this, the

method of analysis was the same as applied in the first approach.

Circular neighbourhood analysis with rarefaction, as conducted

in both the above approaches, has the advantage of allowing

unbiased comparisons of genetic diversity across geographic space.

However, it necessarily excludes accessions from analysis where

sampling intensity is low. In the current study, a total of 38

accessions were thereby excluded (including from North Africa,

southwestern Iran, Afghanistan and Azerbaijan).

Ecological Niche Modelling
Although MaxEnt [14] has a number of well-documented

limitations [32], it is reported to predict the natural distributions of

Wild Barley Diversity, Niche Modelling and Climate
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plants well when based on ‘presence only’ location data compared

to other ecological niche modelling approaches [33–35]. This is

especially so when modelling is based on location data from a

limited number of sites (less than 700 [34]). We therefore

employed MaxEnt 3.3.1 to model geographic distributions for

wild barley under current, past and future climates, in a manner

similar to van Zonneveld et al. [36]. This involved extracting data

for 19 bioclimatic variables for each of the 256 wild barley

accession collection sites from WorldClim [22] (www.worldclim.

org/) (extracted values for variables listed in Table S1). These 19

variables are derived from monthly temperature and rainfall

values and include seasonality and limiting environmental factors.

Our modelling was bounded by longitudes of 18.63 and 80.42

degrees east, latitudes of 21.58 and 47.96 degrees north. The

output of MaxEnt is a grid map with each cell assigned a

probability of taxon presence [37]. Modelled distribution areas

were restricted to the threshold suitability value of maximum

training sensitivity plus specificity recommended by Liu et al. [38].

In total, 13 accessions were excluded from modelling because they

were identified to occur at ‘outlier’ sites (see Table S1).

For the LGM (,21,000 years before present), modelling was

based on CCSM and MIROC models (available at WorldClim,

[2]; the results of models were averaged to provide overall

estimates). The LGM is believed to have been an influential period

in determining contemporary patterns of genetic variation in

many plant species and much modelling of past distributions has

therefore been based on it [2,3,5]. For future climate, modelling

was based on the 2080s period (2070 to 2099) and the medium- to

high-emission trajectory A2 for anthropogenic global warming.

The 2080s A2 scenario has been widely used in modelling to

provide insights on a timescale and threat level that is useful for

planning purposes [39,40]. Nineteen general circulation models

(GCM) were used for future climate (again, results were averaged

across models). Data on future climate projections were provided

by the CGIAR Climate Change, Agriculture and Food Security

Research Programme (CCAFS) and downscaled with the Delta

method [39].

For current, past and future distribution modelling, 2.5-minute

downscaled climate layers were employed, which is the same

resolution as used by Waltari et al. [2] for past-climate distribution

Figure 1. 256 wild barley accessions sampled for genetic analysis and ecological niche modelling. Sampling covered 19 countries and
much of the geographic range of wild barley. Superimposed on the positions of accessions are cpSSR haplotype designations for seven common
haplotypes (frequency $0.05 across all accessions). A, distribution of three common, clearly geographically-differentiated, haplotypes. The
distribution of 10 unique haplotypes is also shown. B, distribution of the other four common haplotypes. In both A and B, other sampled accessions
are indicated by white circles (‘Other’). In total, 31 chloroplast haplotypes were revealed, as described in the Results and Discussion. The approximate
dimensions of the Fertile Crescent, a region considered crucial in the development of agriculture and where dense stands of wild barley can occur [8],
are indicated by green shading for reference purposes (see [26] for a discussion of barley domestication). The coordinates of sampled accessions and
full chloroplast haplotype data are given in Table S1.
doi:10.1371/journal.pone.0086021.g001

Wild Barley Diversity, Niche Modelling and Climate
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projections. Based on the overall geographic scale of our sample

range, we consider this degree of resolution sufficient for our study.

Results and Discussion

Isolation-by-Distance Alone Does Not Explain the
Observed Genetic Structure in Wild Barley

Individual scores for all 256 wild barley accessions for 2,505

BOPA SNPs, 24 nSSRs and five cpSSRs are provided in Table S1.

The overall quality of the data was high, with the mean level of

missing data (including ambiguous calls) across all markers less

than 1%. 2,363 BOPA SNPs were polymorphic and all 24 nSSRs

and 5 cpSSRs. A mean of 16.7 alleles per locus (ranging from 3 to

54) was revealed at nSSRs. Length variation at cpSSR products

indicated a series of single base differences, with combined data

(summing differences across separate products) revealing 31

haplotypes. Seven haplotypes could be defined as common (A to

G, occurring at a frequency $0.05), while 10 were unique.

Compared to haplotype A, haplotypes B, C, D and E differed by a

single nucleotide length at one cpSSR product, while haplotypes F

and G differed by single nucleotide length differences at two

products. Of the common haplotypes, A, D and F showed very

clear geographic structuring but the others did not (compare

Figs. 1A and B). Haplotype A occurred throughout the Fertile

Crescent but not further east, D occurred only in the Eastern

Mediterranean region of the Fertile Crescent, while F occurred

only in Turkmenistan and further east.

Spatial autocorrelation analysis has been widely applied to

assess genetic structure in plant species and to describe deviations

from isolation-by-distance expectations (e.g. [78,79]). It can also be

a useful method for comparing different molecular marker data

sets compiled on the same taxon, as we do here for wild barley

(Fig. 2). In our analysis, a degree of geographic-based genetic

structure is evident for BOPA SNPs, nSSRs and cpSSR

haplotypes (P,0.01 in a test for overall structure in each case).

The decrease in similarity observed with geographic distance is,

however, not a simple trend for any of our three data sets.

Differences in profiles are also observed between marker types. For

both BOPA SNPs and nSSRs, an increase in similarity at a

distance class of around 1,000 km is observed, after which

similarity declines again. For cpSSR haplotypes, an obvious

increase in similarity is also observed at a distance class of around

500 km. Spatial autocorrelation analysis therefore indicates that a

simple isolation-by-distance model does not fully explain genetic

structure across the geographic range of wild barley tested (as

indicated also, e.g., by the distribution of accessions among BOPA

SNP STRUCTURE groups, as shown in Fig. 3). In such

situations, climate change-related expansions and contractions in

range could have a role in determining patterns of variation [3,5].

The differences we observed for spatial autocorrelation analysis

profiles for nuclear BOPA SNPs and nSSRs compared to

maternally-inherited cpSSRs may indicate the more restricted

role of seed when compared to pollen in gene flow (even though

wild barley is predominantly self-pollinated and so pollen-

mediated gene flow is expected to be relatively low [41]). The

smaller effective population size of the organellar genome

compared to the nuclear genome may also be a factor in

determining the differences observed [42].

The Spatial Distribution of Genetic Variation Corresponds
With Niche Modelling in Locating Diversity Hotspots and
is Consistent With Post-LGM Expansion in Central Asia

Geographic information systems are underutilised in genetic

diversity studies, but they can be very effective in expressing

variation in geographic and environmental space [43–45]. Our

analysis is the first on wild barley to use circular neighbourhoods

with rarefaction to account for differences in sampling intensity

across geographic space. These differences otherwise skew the

visualisation and interpretation of genetic diversity, as illustrated

by nSSR analyses of cacao (Theobroma cacao [5]) and the cherimoya

fruit tree (Annona cherimola [6]) in South America. The results of our

analyses of wild barley are given in Figures 4 and 5. Figure 4,

based on allelic/haplotype richness estimates, demonstrates that

BOPA SNPs, nSSRs and cpSSRs all provide similar profiles of

diversity across geographic space. In each case, higher sample-size-

corrected values of richness were observed in the Eastern

Mediterranean region than in Central Asia. Circular neighbour-

hood analysis based on chloroplast haplotypes therefore clearly

corresponds with the distribution of unique haplotypes shown in

Figure 1 (nine of 10 unique haplotypes occurred in the Eastern

Mediterranean region). Figure 5 (A, B), which shows levels of

BOPA SNP and nSSR diversity based on K group richness, also

indicates higher diversity (greater genetic differentiation at a local

level) in the Eastern Mediterranean than in Central Asia (as also

evident from individual K group assignments in Fig. 3).

Our findings are consistent with the limited previous molecular

marker research (uncorrected for sampling intensity) comparing

wild barley from the Eastern Mediterranean region and environs

with Central Asia. For example, Volis et al. [46] measured lower

variation in wild barley in Central Asia (samples from Turkmeni-

stan only) than in the Eastern Mediterranean using isozymes,

while Fu and Horbach [47] found the same based on nSSRs. Our

analysis provides comprehensive evidence to reinforce these

observations and confirms the status of the Eastern Mediterranean

wild barley stands as important resources for conservation and

evaluation [9,10].

Our intention in this study is to compare patterns of genetic

variation in wild barley with the modelled distributions of the

taxon under all three conditions of current, past and future

climates, something which to our knowledge has not been

undertaken before for any member of the genus Hordeum. The

results of our ecological niche modelling are presented in Figure 6,

from which several interesting observations can be drawn in

relation to the genetic data, as set out in this section for the

current-past climate comparison and in the next section for the

current-future climate comparison.

Considering first the modelled present-day geographic distribu-

tion of wild barley, visual assessment confirms that the accessions

included in our study for genetic analysis provide good coverage of

most of the taxon’s range in the Fertile Crescent and Central Asia

(compare Fig. 6A with Fig. 1). The most obvious exception is the

‘peak’ of the Fertile Crescent in southern Turkey, where it is

known that important stands of wild barley occur [8]. Although

not sampled in this study, these Turkish stands should be

incorporated in future work. A comparison of the modelled

present-day geographic distribution of wild barley with that

projected for the LGM (Figs. 6B, D) suggests that since the LGM

suitable habitat has been lost in areas that include southeastern

Iran and northern Saudi Arabia. At the same time, the

comparison indicates that at the LGM wild barley was, just as it

is now, widely present in the region bordering the Eastern

Mediterranean coast. A comparison of current and past modelled

distributions also indicates habitat gains since the LGM. Particular

areas identified in this regard include the northern Iraq portion of

the Fertile Crescent and, especially, a large part of Central Asia.

The apparent relatively recent range expansion of wild barley in

Central Asia as revealed by ecological niche modelling is consistent

with our findings of lower levels of genetic diversity in the region

Wild Barley Diversity, Niche Modelling and Climate
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compared to the Eastern Mediterranean, in which latter region it

can be postulated that a continuous presence of the taxon has led

to the accumulation of genetic diversity (as shown in Figs. 4, 5A

and B) there. The correspondence between past-present ecological

niche modelling and our analysis of spatial genetic diversity in wild

barley has important implications, as it supports the utility of niche

modelling as a tool for identifying genetically diverse and

potentially refugial areas. There are, however, other possible

reasons why different levels of genetic diversity are observed across

wild barley’s range. The Eastern Mediterranean region (as

represented, e.g., by altitudinal variation for the accessions

included in the current study, see Fig. 5C) is, for example,

particularly environmentally heterogeneous. This may have

allowed more genetic variation to develop and accumulate there

compared to Central Asia without recourse to an explanation

based upon post-LGM macro-geographic range adjustment. We

are not able to distinguish between these alternatives (or, indeed,

to understand whether a combination of both range expansion

and environmental heterogeneity are important) for determining

the current pattern of spatial genetic diversity observed in wild

barley. Nevertheless, one interesting feature of our data that

deserves further exploration in this regard is the level of linkage

disequilibrium (LD) between chromosome-position-mapped

BOPA SNP markers in different parts of wild barley’s range, as

we relate below.

Figure 2. Spatial autocorrelation analysis profiles for wild barley accessions based on BOPA SNPs, nSSRs and cpSSRs. Geographic
distances on the x-axis are the mean values of distance classes. The symbols at the top of the figure mark observations significantly larger or smaller
(P#0.01) than the average for distance classes. Values for the Sp statistic, calculated from the regression slope of the graph and the kinship coefficient
of the first distance class [76], are also shown. Placing all three data sets on the same graph allows profiles to be compared. Increases in similarity at a
distance class of around 1,000 km, and an earlier additional increase for cpSSRs at around 500 km, illustrate that a simple isolation-by-distance model
is not sufficient to describe genetic variation in wild barley.
doi:10.1371/journal.pone.0086021.g002

Figure 3. STRUCTURE group assignments for individual wild barley accessions. The results shown are based on K = 5 and for BOPA SNPs.
The results for nSSRs (not shown) were similar. Results correspond with spatial autocorrelation analysis (Fig. 2) in describing a more complex genetic
structure in wild barley than might be expected with a simple isolation-by-distance model.
doi:10.1371/journal.pone.0086021.g003

Wild Barley Diversity, Niche Modelling and Climate
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To explore LD, we undertook a further analysis based on two

sub-samples of our wild barley accessions taken to represent the

Eastern Mediterranean and Central Asia regions, as shown in

Figure 7. These sub-samples, each of 40 individuals, represent

approximately balanced sets of material (as explained in the legend

to Fig. 7) for LD comparison. Compared to the Eastern

Mediterranean sub-sample, the Central Asian sub-sample is of

lower genetic diversity, comes from a more uniform environment

and has a much higher proportion of accessions collected from

habitat established (apparently) since the LGM. For these sub-

samples of accessions, we then calculated LD for pairs of

chromosome-mapped BOPA SNPs falling into different centimor-

gan (cM) distance categories along each of barley’s seven

chromosomes. Estimates for LD were based on 487 SNPs (the

number of mapped SNPs on each chromosome ranged from 57 to

80) with a minimum minor allele frequency of 0.1 in both sub-

samples, while the chromosome distance interval for making

pairwise comparisons was set at five cM (so comparisons for paired

SNPs 0 to 5 cM apart, 5 to 10 cM apart, etc.). The level of LD was

estimated with r2 values (the squared correlation of allele

frequencies [48,49]) using DNASP 5.00.07 [50] with all SNPs

assigned homozygous status (i.e., no intra-locus component in

analysis). Finally, once r2 values were generated, they were

compiled into mean values for chromosome distance categories (a

minimum of 10 observations for a distance interval were required

before assigning a mean value) for each chromosome, and then

averaged across chromosomes, in EXCEL. Results were then

expressed in graphical form comparing LD estimates across sub-

samples (mean r2 Central Asia sub-sample/mean r2 Eastern

Mediterranean sub-sample) (Fig. 8).

Our comparison of LD estimates indicates that at shorter

chromosome distance intervals values of LD are relatively higher

in Central Asia than in the Eastern Mediterranean, but that with

increased distance along chromosomes values become more equal.

Linkage disequilibrium values are difficult to interpret because of

the many influencing factors, including population structure,

selection pressures, mating patterns and changes in population size

Figure 4. Allelic (A and B) and haplotype (C) richness (A10) maps
for wild barley. BOPA SNPs, nSSRs and cpSSRs all indicate the Eastern
Mediterranean region as more diverse (highly diverse areas = dark blue)
than Central Asia. As expected, nSSRs with high allelic diversity and
cpSSRs with multiple haplotypes reveal relatively higher richness values
within neighbourhoods (A10 as high as 7.84 and 11.38, respectively)
than biallelic BOPA SNPs (maximum A10 = 1.67). Not all of the original
sample range could be included in analysis because of the required
minimum sampling intensity to calculate a standardised diversity value
(see Materials and Methods; compare the current figure with Fig. 1).
Accessions included in analysis in a particular geographic area are
circumscribed by a dotted line. A, 2,426 from 2,505 BOPA SNPs used in
calculations (SNPs excluded with $25% missing data in one or more
grid cells); B, all 24 nSSRs used in calculations; C, all cpSSR haplotypes
used in calculations.
doi:10.1371/journal.pone.0086021.g004

Figure 5. STRUCTURE group richness (A and B, K10) and
‘altitude richness’ (C, Alt10) maps for wild barley. A and B,
richness estimates for BOPA SNPs and nSSRs, respectively, K = 5 in
STRUCTURE analysis. Both marker sets indicate the Eastern Mediterra-
nean region as more diverse (highly diverse areas = dark brown) than
Central Asia. C, ‘altitude richness’ of wild barley sample sites, based on
five altitude categories (,200 m, 200 to 600 m, 600 to 1,000 m, 1,000
to 1,400 m, .1,400 m). Altitude data provide an indication of
environmental heterogeneity and were downloaded from WorldClim
(www.worldclim.org/; values given in Table S1). Unlike the 19
bioclimatic variables used elsewhere in the current study, altitude data
are actual values rather than interpolations from weather station
records, so they are particularly appropriate for assessing real
environmental heterogeneity [22,77]. Altitude richness estimates
indicate sample points in the Eastern Mediterranean region as more
diverse than those in Central Asia. Not all of the original sample range
could be included in analyses because of the required minimum
sampling intensity to calculate standardised diversity values (see
Materials and Methods; compare the current figure with Figs. 1 and 3
[individual STRUCTURE K group assignments], see also Fig. 4).
Accessions included in analyses in a particular geographic area are
circumscribed by a dotted line. The analysis to generate ‘altitude
richness’ was carried out in the same way as for STRUCTURE group
richness, except ‘altitude category’ substituted for ‘STRUCTURE group’.
doi:10.1371/journal.pone.0086021.g005
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and range [26,51–53]. In the absence of confounding factors,

however, our observations are consistent with a relatively recent

geographic expansion in Central Asia that has not allowed for

enough time for recombination between proximate paired markers

to result in equilibrium (convergence) between them [54–56].

Although interesting, we stress that this interpretation of the results

of our LD analysis is speculative and must be treated with caution.

For example, the selfing rate for wild barley can vary across

populations (see [41] and [57] for Israeli and Jordanian

populations, respectively), and if wild barley stands in Central

Asia were more highly selfed [58], this could also explain why LD

for proximate markers was higher there than in the Eastern

Mediterranean. Clearly, more research on this topic is required.

Niche Modelling Suggests Small, But Statistically
Significant, Losses of Genetic Diversity in Wild Barley
Under Mid-Term Anthropogenic Climate Change

A comparison of present-day plant distributions with predictions

for the 2080s is useful for devising responses to anthropogenic

climate change [1,32]. For example, areas of predicted habitat loss

may be targets for the collection of seed that can then be stored in

gene banks. In addition, locations where habitat is likely to be

retained may be priorities for in situ conservation measures [59,60].

Of most interest may be locations where habitat is predicted to be

retained in geographic regions of general habitat loss. Our

ecological niche modelling comparing the current distribution of

wild barley with that predicted for the 2080s under the A2

emission scenario is shown in Figure 6 (C, E). The comparison

suggests that suitable habitat will be lost in particular in large areas

of Iran, northern Syria and in the border region of Afghanistan

and Turkmenistan. At the same time, potential habitat will be

gained most notably in parts of Turkey.

In order to calculate the possible losses in range-wide genetic

diversity in wild barley associated with future habitat loss, we

compared allelic richness at nSSRs for accessions predicted to be

in shared future and current habitat (N = 155, i.e., excluding

accessions in ‘lost’ habitat, as indicated in Table S1) with

accessions in the current distribution (N = 243). We chose nSSRs

as the estimator for this analysis because of their high allelic

variability and hence sensitivity in describing diversity differences.

Our analysis indicated a relatively small reduction in allelic

richness under climate change (shared habitat, A = 14.88; current

habitat, A = 15.88; estimates calculated in FSTAT 2.9.4 [61] and

corrected by rarefaction to a sample size of 135 complete

genotypes across all nSSRs). Although small, the difference was

statistically significant (P = 0.012 based on a two-tailed t-test of

individual locus allelic richness values undertaken in EXCEL).

Further assessment, based on BOPA SNPs and cpSSRs, revealed a

relatively modest 108 SNP alleles (4.6% of SNPs in the

comparison) and four chloroplast haplotypes unique to 2080s

‘lost’ habitat. Our analysis therefore suggests that, overall, mid-

term future losses in genetic diversity due to climate change are

expected to be relatively low. A comparison of modelled current,

past and future distributions (Fig. 6) suggests that in part this is

because much predicted future habitat loss is in areas of putative

post-LGM range expansion, where contemporary genetic varia-

tion is relatively low (e.g., in the border region of Afghanistan and

Turkmenistan). On the other hand, shared future-current habitat

includes much of the more genetically diverse putative LGM

refugial regions. Of concern, though, could be future habitat loss

in parts of northern Syria, where habitat is in common in the past-

current comparison, but not in the future-current comparison

(compare Figs. 6D, E).

It is important to consider a number of provisos when

interpreting our findings. First, we have not considered in our

analysis that existing wild barley populations in habitat that will be

lost under climate change could migrate to (newly) environmen-

tally-matched sites. Such migration will presumably be easier in

areas with greater micro-geographic environmental heterogeneity,

as the distances to be moved are then smaller. This would suggest

migration is more feasible in the Eastern Mediterranean region

(see Fig. 5C). Whether migrations are possible also depends on the

level of human activity in wild barley’s habitat. Human

disturbance that provides opportunities for establishment could

Figure 6. Potential wild barley distributions in current (A), past
(B) and future (C) climates. Distributions are based on ecological
niche modelling using MaxEnt (see Materials and Methods). D,
differences between current and past modelled distributions, including
areas lost and gained since the LGM. E, differences between future and
current modelled distributions, including areas expected to be lost and
gained by the 2080s. Note that past and future distribution maps take
no account of rises or falls in sea levels or of other water bodies, and
that these distributions are shown superimposed on current country
boundaries.
doi:10.1371/journal.pone.0086021.g006
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be beneficial, while modern agricultural practices that intensify

crop production (excluding other plants from fields) and fragment

wild habitat could be detrimental [62]. Second, in common with

most other studies that compare present-day and potential future

distributions to make conservation predictions (e.g., [5,63]), our

analysis does not consider the possibilities for the local adaptation

of plant populations to new climatic conditions. There is little

relevant research on this topic for wild barley, which ideally

requires multiple time-interval-based monitoring of wild stands

[64]. Nevo et al. [65], however, did assess genetic variation and

phenotypic traits in the same 10 natural stands of wild barley in

Israel sampled first in 1980 and then again in 2008. The authors

observed some change in the distribution of nSSR alleles and

larger changes in flowering times (accessions sampled in 2008

flowered significantly earlier under greenhouse conditions). These

changes could indicate responses to climate change, although

other explanations are also possible. Interestingly, the changes in

wild barley nSSR composition observed by Nevo et al. [65] were

much smaller than those found in wild emmer wheat (Triticum

dicoccoides) populations included in the same study and sampled at

the same dates. This suggests different responses to climate change

by different cereals in the Eastern Mediterranean region. Third

and finally, our current assessment was based on genetic markers

that are presumably (mostly) neutral with regard to phenotype, so

we are not able to determine whether or not there will be

important losses in functional genetic diversity under anthropo-

genic climate change.

Final Considerations

Our analyses are consistent with the view that climate change

has played a role in determining the levels of present-day genetic

variation observed in wild barley in different portions of its natural

range. Our data support the utility of ecological niche modelling of

current and past plant distributions for predicting geographic areas

of high genetic diversity, and suggest limited future losses of

genetic diversity in wild barley under mid-term future climate

Figure 7. Locations of wild barley individuals sub-sampled from two regions for testing of linkage disequilibrium (LD). For LD
assessment, forty accessions were chosen at random from the Eastern Mediterranean and Central Asia regions, across an approximately equal-
dimensioned geographic area to minimise confounding sample size and dimensional effects in analysis (a significant issue in LD calculations [26]). In
the case of the Eastern Mediterranean region, to ensure similar geographic coverage to Central Asia, sampling was extended eastward away from the
coast below the peak of the Fertile Crescent into northwestern Iran. The coordinates of the accessions sampled for LD analysis are given in Table S1.
Compared to the Eastern Mediterranean sub-sample, that from Central Asia had a less variable environment across accession collection sites (see
Fig. 5C and the bioclimatic variables given in Table S1). Furthermore, climate modelling suggested a much greater proportion of accessions in the
Central Asian sub-sample to be associated with range expansion since the LGM (see Fig. 6D and Table S1). Consistent with genetic diversity levels
expressed on maps (Figs. 4, 5A, 5B), the latter sub-sample also had lower nuclear diversity according to FSTAT 2.9.4 [61] calculations (nSSR allelic
richness for the Eastern Mediterranean sub-sample = 10.44, for Central Asia = 7.44, corrected by rarefaction to a sample size of 36 complete genotypes
across all nSSRs; P,0.001 based on a two-tailed t-test of individual locus allelic richness values undertaken in EXCEL). Another factor that can
confound LD comparisons is differences in allele frequency distributions between samples. We therefore tested allele frequency profiles for our two
sub-samples, and found them to be similar (proportion of markers with a minimum minor allele frequency between 0.1 and 0.3 was 0.493 and 0.499
for the Eastern Mediterranean and Central Asia areas, respectively).
doi:10.1371/journal.pone.0086021.g007

Figure 8. Comparison of mean linkage disequilibrium (LD) (r2)
values across all wild barley chromosomes. CA = Central Asia,
EM = Eastern Mediterranean sub-samples. Comparisons are for BOPA
SNPs at five cM intervals (SNPs 0 to 5 cM apart, 5 to 10 cM apart, etc.).
The dotted line indicates the average value of all plotted comparisons.
The graph indicates that when compared to longer pairwise SNP
distances, LD estimates for shorter pairwise SNP distances are relatively
higher in the Central Asia sub-sample than in the Eastern Mediterranean
sub-sample. The difference between sub-samples appears to be lost
after about 15 cM.
doi:10.1371/journal.pone.0086021.g008
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change. We have explored the use of chromosome-position-

mapped SNPs for discriminating between different hypotheses to

explain diversity patterns in wild barley, but more research is

required on this topic, ideally using SNPs that have been physically

positioned in the genome. With the promise soon of a complete

genome sequence for barley (building on the current sequence

assembly [66,67]), the physical distances between the SNPs used in

the current study will soon be available. This will allow more

formal LD analysis of possible range expansions and contractions

in relation to climate change. Further research on wild barley

should also explore the ensemble forecasting of distributions based

on both the differences between GCM and the multiple statistical

methods available for species modelling [68,69]. Modelling should

also investigate the possible further downscaling of environmental

data in predictions [70], which could provide greater accuracy

[34,71].

The wider utility of past-present ecological niche modelling for

locating centres of genetic diversity in the Fertile Crescent and

Central Asia regions could be tested by examining the wild

progenitors of other important cereals located there [8]. Molecular

marker data sets are available for comparison purposes (e.g., for

einkorn wheat [Triticum monococcum] and emmer wheat [72,73]),

although more systematic assessments of genetic diversity are

required based on fully geo-referenced samples. It would be

interesting to model the distributions of different wild cereals at the

time it is proposed that humans began to manage them

significantly. How modelled distributions correspond with putative

sites of first cultivation and first domestication [74] could then be

explored. For example, modelling to understand distributions over

the transition to the Younger Dryas (,12,000 years ago) would be

useful. This was a relatively cold and unfavourable period for

humans in the Fertile Crescent region that is believed to be

associated with early cultivation events, leading eventually to

domestications [75]. Distribution modelling of wild barley

combined with geographically coincident sampling and genetic

analysis of wild and landrace accessions of the taxon (and of other

cereals) throughout the region will provide important insights into

domestication processes [26].

Supporting Information

Table S1 Geographic coordinates, environmental and
genetic data for 256 wild barley accessions.

(XLSX)
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