417 research outputs found
Why I tense up when you watch me: inferior parietal cortex mediates an audience’s influence on motor performance
The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output
Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk
When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency
Probing Local Wind and Temperature Structure Using Infrasound from Volcan Villarrica (Chile)
We use the continuous and intense (∼107 W) infrasound produced by Volcan Villarrica (Chile) to invert for the local dynamic wind and temperature structure of the atmosphere. Infrasound arrays deployed in March 2011 at the summit (2826 m) and on the NNW flank (∼8 km distant at 825 m) were used to track infrasound propagation times and signal power. We model an atmosphere with vertically varying temperature and horizontal winds and use propagation times (ranging from 23 to 24 s) to invert for horizontal slowness (2.75–2.94 s/km) and average effective sound speeds (328–346 m/s) for NNW propagating infrasound. The corresponding ratio of recorded acoustic power at proximal versus distal arrays was also variable (ranging between 0.15 to 1.5 for the peak 0.33–1 Hz infrasound band). Through application of geometrical ray theory in a uniform gradient atmosphere, these \u27amplification factors\u27 are modeled by effective sound speed lapse rates ranging from −15 to +4 m/s per km. NNW-projected wind speeds ranging from −20 m/s to +20 m/s at 2826 m and wind gradients ranging from −11 to +10 m/s per km are inferred from the difference between effective sound speed profiles and adiabatic sound speeds derived from local temperature observations. The sense of these winds is in general agreement with regional meteorological observations recorded with radiosondes. We suggest that infrasound probing can provide useful spatially averaged estimates of atmospheric wind structure that has application for both meteorological observation and volcanological plume dispersal modeling
Principals\u27 View of the World: Identification of Valued Teacher Characteristics
The knowledge of what principals value in teachers is important to both the teacher and the principal
Internet-based medical education: a realist review of what works, for whom and in what circumstances
http://creativecommons.org/licenses/by/2.0
Piloting online self-audit of methadone treatment in Irish general practice: results, reflections and educational outcomes
Background: Work based learning underpins the training and CPD of medical practitioners. Medical audit operates on two levels; individual self-assessment and professional/practice development. In Ireland, annual practice improvement audit is an essential requirement for the successful completion of continuous professional development (CPD) as determined by the regulatory body, the Irish Medical Council. All general practice (GP) doctors providing methadone maintenance treatment (MMT) in Ireland have a contractual obligation to partake in a yearly methadone practice audit. The Irish College of General Practitioners (ICGP) as national training provider is tasked to facilitate this annual audit process. The purpose of this audit is to assess the quality of care provided to patients against an agreed set of national standards, enhance learning, and promote practice improvement and reflective practice. The aim was to present an online MTP self-audit and evaluate results from a 12-month pilot among GPs providing MMT in Ireland.
Method A mixed method study describing three phases (design and development, pilot/implementation and evaluation) of a new online self –audit tool was conducted. Descriptive and thematic analysis of audit and evaluation data was conducted.
Results: Survey Monkey is a suitable software package for the development and hosting of an easy to use online audit for MMT providing doctors. Analysis of the audit results found that the majority of GPs scored 80% or over for the 25 identified essential criteria for MMT provision. The evaluation of the GP audit experience underscores the positive outcomes of the online self-audit in terms of improving practice systems, encouraging reflective practice, enhanced patient care and doctor commitment to continued provision of MMT in addiction clinics and in primary care.
Conclusions: Results from this audit demonstrate a high level of compliance with best practise MMT guidelines by Irish GPs providing MMT. The online self-audit process was well received and encouraged reflective practice. The audit process hinged on the individual GP’s ability to review and critically analyse their professional practice, and manage change. This model of audit could be adapted and used to monitor the management of other chronic illnesses in general practice
Top-Down Feedback in an HMAX-Like Cortical Model of Object Perception Based on Hierarchical Bayesian Networks and Belief Propagation
PubMed ID: 2313976
An immersed discontinuous Galerkin method for compressible Navier-Stokes equations on unstructured meshes
We introduce an immersed high-order discontinuous Galerkin method for solving
the compressible Navier-Stokes equations on non-boundary-fitted meshes. The
flow equations are discretised with a mixed discontinuous Galerkin formulation
and are advanced in time with an explicit time marching scheme. The
discretisation meshes may contain simplicial (triangular or tetrahedral)
elements of different sizes and need not be structured. On the discretisation
mesh the fluid domain boundary is represented with an implicit signed distance
function. The cut-elements partially covered by the solid domain are integrated
after tessellation with the marching triangle or tetrahedra algorithms. Two
alternative techniques are introduced to overcome the excessive stable time
step restrictions imposed by cut-elements. In the first approach the cut-basis
functions are replaced with the extrapolated basis functions from the nearest
largest element. In the second approach the cut-basis functions are simply
scaled proportionally to the fraction of the cut-element covered by the solid.
To achieve high-order accuracy additional nodes are introduced on the element
faces abutting the solid boundary. Subsequently, the faces are curved by
projecting the introduced nodes to the boundary. The proposed approach is
verified and validated with several two- and three-dimensional subsonic and
hypersonic low Reynolds number flow applications, including the flow over a
cylinder, a space capsule and an aerospace vehicle
Recommended from our members
Recognition of dance-like actions: memory for static posture or dynamic movement?
Dance-like actions are complex visual stimuli involving multiple changes in body posture across time and space. Visual perception research has demonstrated a difference between the processing of dynamic body movement and the processing of static body posture. Yet, it is unclear whether this processing dissociation continues during the retention of body movement and body form in visual working memory (VWM). When observing a dance-like action, it is likely that static snapshot images of body posture will be retained alongside dynamic images of the complete motion. Therefore, we hypothesized that, as in perception, posture and movement would differ in VWM. Additionally, if body posture and body movement are separable in VWM, as form- and motion-based items, respectively, then differential interference from intervening form and motion tasks should occur during recognition. In two experiments, we examined these hypotheses. In Experiment 1, the recognition of postures and movements was tested in conditions in which the formats of the study and test stimuli matched (movement-study to movement-test, posture-study to posture-test) or mismatched (movement-study to posture-test, posture-study to movement-test). In Experiment 2, the recognition of postures and movements was compared after intervening form and motion tasks. These results indicated that (1) the recognition of body movement based only on posture is possible, but it is significantly poorer than recognition based on the entire movement stimulus, and (2) form-based interference does not impair memory for movements, although motion-based interference does. We concluded that, whereas static posture information is encoded during the observation of dance-like actions, body movement and body posture differ in VWM
Rapid Encoding and Perception of Novel Odors in the Rat
To gain insight into which parameters of neural activity are important in shaping the perception of odors, we combined a behavioral measure of odor perception with optical imaging of odor representations at the level of receptor neuron input to the rat olfactory bulb. Instead of the typical test of an animal's ability to discriminate two familiar odorants by exhibiting an operant response, we used a spontaneously expressed response to a novel odorant—exploratory sniffing—as a measure of odor perception. This assay allowed us to measure the speed with which rats perform spontaneous odor discriminations. With this paradigm, rats discriminated and began responding to a novel odorant in as little as 140 ms. This time is comparable to that measured in earlier studies using operant behavioral readouts after extensive training. In a subset of these trials, we simultaneously imaged receptor neuron input to the dorsal olfactory bulb with near-millisecond temporal resolution as the animal sampled and then responded to the novel odorant. The imaging data revealed that the bulk of the discrimination time can be attributed to the peripheral events underlying odorant detection: receptor input arrives at the olfactory bulb 100–150 ms after inhalation begins, leaving only 50–100 ms for central processing and response initiation. In most trials, odor discrimination had occurred even before the initial barrage of receptor neuron firing had ceased and before spatial maps of activity across glomeruli had fully developed. These results suggest a coding strategy in which the earliest-activated glomeruli play a major role in the initial perception of odor quality, and place constraints on coding and processing schemes based on simple changes in spike rate
- …
